Ventzislav Nikov

Learn More
This paper presents a block cipher that is optimized with respect to latency when implemented in hardware. Such ciphers are desirable for many future pervasive applications with real-time security needs. Our cipher, named PRINCE, allows encryption of data within one clock cycle with a very competitive chip area compared to known solutions. The fully(More)
Higher-order differential power analysis attacks are a serious threat for cryptographic hardware implementations. In particular, glitches in the circuit make it hard to protect the implementation with masking. The existing higher-order masking countermeasures that guarantee security in the presence of glitches use multi-party computation techniques and(More)
Threshold implementation (TI) is a masking method that provides security against first-order DPA with minimal assumptions on the hardware. It is based on multi-party computation and secret sharing. In this paper, we provide an efficient technique to find TIs for all 3 and 4-bit permutations which also covers the set of 3×3 and 4×4 invertible S-boxes. We(More)
Threshold Implementations provide provable security against first-order power analysis attacks for hardware and software implementations. Like masking, the approach relies on secret sharing but it differs in the implementation of logic functions. At Eurocrypt 2011 Moradi et al. published the to date most compact Threshold Implementation of AES-128(More)
Side-channel attacks have proven many hardware implementations of cryptographic algorithms to be vulnerable. A recently proposed masking method, based on secret sharing and multi-party computation methods, introduces a set of sufficient requirements for implementations to be provably resistant against first-order DPA with minimal assumptions on the(More)
A new cryptographic hash function Whirlwind is presented. We give the full specification and explain the design rationale. We show how the hash function can be implemented efficiently in software and give first performance numbers. A detailed analysis of the security against state-of-the-art cryptanalysis methods is also provided. In comparison to the(More)
This work is about distributed protocols for oblivious transfer, proposed by Naor and Pinkas, and recently generalized by Blundo et. al. In this settings a Sender has n secrets and a Receiver is interested in one of them. The Sender distributes the information about the secrets to m servers, and a Receiver must contact a threshold of the servers in order to(More)
In this paper we provide several known and one new constructions of new linear secret sharing schemes (LSSS) from existing ones. This constructions are well-suited for didactic purposes, which is a main goal of this paper. It is well known that LSSS are in one-to-one correspondence with monotone span programs (MSPs). MSPs introduced by Karchmer and(More)
Embedded cryptographic devices are vulnerable to power analysis attacks. Threshold implementations (TIs) provide provable security against first-order power analysis attacks for hardware and software implementations. Like masking, the approach relies on secret sharing but it differs in the implementation of logic functions. While masking can fail to provide(More)