Venkatachalam Lakshmanan

Learn More
Plants have evolved various mechanisms for detoxification that are specific to the plant species as well as the metal ion chemical properties. Malic acid, which is commonly found in plants, participates in a number of physiological processes including metal chelation. Using natural variation among Arabidopsis accessions, we investigated the function of(More)
Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through jasmonic acid (JA)- and ethylene (ETH)-mediated ISR. Abscisic acid(More)
This paper describes the application of stochastic grey-box modeling to identify electrical power consumption-to-temperature models of a domestic freezer using experimental measurements. The models are formulated using stochastic differential equations (SDEs), estimated by maximum likelihood estimation (MLE), validated through the model residuals analysis(More)
Recent work has shown that the rhizospheric and phyllospheric microbiomes of plants are composed of highly diverse microbial species. Though the information pertaining to the diversity of the aboveground and belowground microbes associated with plants is known, an understanding of the mechanisms by which these diverse microbes function is still in its(More)
Our previous work has demonstrated that Arabidopsis thaliana can actively recruit beneficial rhizobacteria Bacillus subtilis strain FB17 (hereafter FB17) through an unknown shoot-to-root long-distance signaling pathway post a foliar bacterial pathogen attack. However, it is still not well understood which genetic targets FB17 affects in plants. Microarray(More)
A natural rice rhizospheric isolate abates arsenic uptake in rice by increasing Fe plaque formation on rice roots. Rice (Oryza sativa L.) is the staple food for over half of the world’s population, but its quality and yield are impacted by arsenic (As) in some regions of the world. Bacterial inoculants may be able to mitigate the negative impacts of arsenic(More)
Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B.(More)
Our recent work has shown that a rice thizospheric natural isolate, a Pantoea sp (hereafter EA106) attenuates Arsenic (As) uptake in rice. In parallel, yet another natural rice rhizospheric isolate, a Pseudomonas chlororaphis (hereafter EA105), was shown to inhibit rice blast pathogen Magnaporthe oryzae. Considering the above, we envisaged to evaluate the(More)
AtALMT1 (Arabidopsis thaliana ALuminum activated Malate Transporter 1) encodes an Arabidopsis thaliana malate transporter that has a pleiotropic role in Arabidopsis stress tolerance. Malate released through AtALMT1 protects the root tip from Al rhizotoxicity, and recruits beneficial rhizobacteria that induce plant immunity. To examine whether the(More)
  • 1