Venkat Ramanan

Learn More
Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For(More)
BACKGROUND Both intrinsic contrast (T₁ and T₂ relaxation and the equilibrium magnetization) and contrast agent (gadolinium)-enhanced MRI are used to visualize and evaluate acute radiofrequency ablation lesions. However, current methods are imprecise in delineating lesion extent shortly after the ablation. METHODS AND RESULTS Fifteen lesions were created(More)
PURPOSE This study aimed to investigate the use of anatomically tailored hexagonal sampling for scan-time and error reduction in MRI. MATERIALS AND METHODS Anatomically tailored hexagonal MRI (ANTHEM), a method that combines hexagonal sampling with specific symmetry in anatomical geometry, is proposed. By using hexagonal sampling, aliasing artifacts are(More)
Pathophysiological responses after acute myocardial infarction include edema, hemorrhage, and microvascular obstruction along with cellular damage. The in vivo evolution of these processes simultaneously throughout infarct healing has not been well characterized. The purpose of our study was to quantitatively monitor the time course of these mechanisms by(More)
Hyperpolarization of spins via dynamic nuclear polarization (DNP) has been explored as a method to non-invasively study real-time metabolic processes occurring in vivo using (13)C-labeled substrates. Recently, hyperpolarized (13)C pyruvate has been used to characterize in vivo cardiac metabolism in the rat and pig. Conventional 3D spectroscopic imaging(More)
Guidance of electrophysiological (EP) procedures by magnetic resonance imaging (MRI) has significant advantages over x-ray fluoroscopy. Display of electroanatomic mapping (EAM) during an intervention fused with a prior MR volume and DE-MRI derived tissue classification should improve the accuracy of cardiac resynchronization therapy (CRT) for ventricular(More)
BACKGROUND Identification of viable slow conduction zones manifested by abnormal local potentials is integral to catheter ablation of ventricular tachycardia (VT) sites. The relationship between contrast patterns in cardiovascular magnetic resonance (CMR) and local electrical mapping is not well characterized. The purpose of this study was to identify(More)
The substrate of potentially lethal cardiac arrhythmias often resides in the gray zone (GZ), a mixture of viable myocytes and collagen strands found between healthy myocardium and infarct core (IC). The specific aims of this paper are to demonstrate correspondence between regions delineated in T1* (apparent T1) maps and tissue characteristics seen in(More)
GOAL The purpose of this study is to improve the accuracy of interventional catheter guidance during intracardiac procedures. Specifically, the use of preprocedural magnetic resonance roadmap images for interventional guidance has limited anatomical accuracy due to intraprocedural respiratory motion of the heart. Therefore, we propose to build a novel(More)
Left ventricular remodeling as a result of acute myocardial infarction (AMI) is associated with significant morbidity, leading to cardiovascular dysfunction, disability, and death. Despite successful revascularization, coronary vasodilatory dysfunction has been shown in infarcted and remote myocardium of patients following AMI. Our study explored the(More)