Veli-Matti Leppänen

Learn More
In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor(More)
Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological(More)
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of(More)
We have solved the structures of mammalian mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF). CDNF protects and repairs midbrain dopaminergic neurons in vivo; MANF supports their survival in culture and is also cytoprotective against endoplasmic reticulum (ER) stress. Neither protein structure(More)
  • 1