Learn More
AIMS To engineer acetogen biocatalyst capable of fermenting synthesis gas blend to acetone as the only liquid carbonaceous product. METHODS AND RESULTS The metabolic engineering comprised inactivation of phosphotransacetylase via integration of a cassette comprising synthetic genes erm(B), thiolase and HMG-CoA synthase. Acetaldehyde dehydrogenase was(More)
Acetogen strain Clostridium sp. MT1121 produced 300 mM acetate (p<0.005) and 321 mM ethanol (p<0.005) from synthesis gas (syngas) blend 60 % CO and 40 % H(2). Clostridium sp. MT1121 was metabolically engineered to eliminate production of either acetate or acetaldehyde during syngas fermentation. We used Cre-lox66/lox71-based gene removal system to eliminate(More)
Plasmid-free acetogen Clostridium sp. MT962 electrotransformed with a small cryptic plasmid pMT351 was used to develop time- and cost-effective methods for plasmid elimination. Elimination of pMT351 restored production of acetate and ethanol to the levels of the plasmid-free strain with no dry cell weight changes. Destabilizing cell membrane via microwave(More)
Acetogen Clostridum sp. MT1962 produced 287 mM acetate (p < 0.005) and 293 mM ethanol (p < 0.005) fermenting synthesis gas blend 60% CO and 40% H₂ in single-stage continuous fermentation. This strain was metabolically engineered to the biocatalyst Clostridium sp. MTButOH1365. The engineered biocatalyst lost production of ethanol and acetate while initiated(More)
Acetogen strain Clostridum sp. MT653 produced acetate 273 mM (p < 0.005) and ethanol 250 mM (p < 0.005) from synthesis gas blend mixture of 64% CO and 36% H(2). Clostridum sp. MT653 was metabolically engineered to the biocatalyst strain Clostridium sp. MTEtOH550. The biocatalyst increased ethanol yield to 590 mM with no acetate production during(More)
Affinity labelling of E. coli ribosomes with the 2',3'-O-[4-(N-2-chloroethyl)-N-methylamino]benzylidene derivative of AUGU6 was studied within the initiation complex (complex I) obtained by using fMet-tRNAMetf and initiation factors and within the pretranslocational complex (complex II) obtained by treatment of complex I with the ternary complex(More)
  • 1