Vejdi I. Hasanov

Learn More
The two matrix iterations X k+1 = I ∓ A * X −1 k A are known to converge linearly to a positive definite solution of the matrix equations X ± A * X −1 A = I, respectively, for known choices of X 0 and under certain restrictions on A. The convergence for previously suggested starting matrices X 0 is generally very slow. This paper explores different initial(More)
Some semi-discrete analogous of well known one-point family of iterative methods for solving nonlinear scalar equations dependent on an arbitrary constant are proposed. The new families give multi-point iterative processes with the same or higher order of convergence. The convergence analysis and numerical examples are presented.
In this paper we consider the positive definite solutions of nonlinear matrix equation X + A ૽ X −δ A = Q, where δ ∈ (0, 1], which appears for the first time in [ On an iteration methods for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal. Appl. 23 (2001) 632–645]. The necessary and sufficient conditions for the existence of a solution(More)
  • 1