Learn More
A thermostable extracellular beta-mannanase from the culture supernatant of a fungus Aspergillus niger gr was purified to homogeneity. SDS-PAGE of the purified enzyme showed a single protein band of molecular mass 66 kDa. The beta- mannanase exhibited optimum catalytic activity at pH 5.5 and 55 degrees C. It was thermostable at 55 degrees C, and retained(More)
The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular extreme alkaliphilic, halotolerent, detergent, and thermostable mannanase activity. The cultural conditions for the maximum enzyme production were optimized with respect to pH, temperature, NaCl, and inexpensive agro wastes as substrates. Mannanase production was enhanced(More)
Alpha-galactosidase from Aspergillus oryzae was immobilized on chitosan beads using glutaraldehyde as a cross-linking agent. The general properties of free and immobilized enzymes were determined. The optimum pH for the free and immobilized enzymes was 4.8 and 4.6 respectively. The optimum temperature for the free enzyme was 50 degrees C, whereas that of(More)
An extracellular thermostable alpha-galactosidase producing Aspergillus terreus (GR) strain was isolated from soil sample using guar gum as sole source of carbon. It was purified to apparent homogeneity by acetone precipitation, gel filtration followed by DEAE-Sephacel chromatographic step. The purified enzyme showed a single band after sodium dodecyl(More)
A bacterial strain was isolated from dhal industry red gram waste and identified as Bacillus. A thermostable extracellular amylase was partially purified from the strain. Optimum temperature and pH for the enzyme were found to be 60 degrees C and 6.5, respectively. The maximum amylase production was achieved with maltose as carbon source. Among the nitrogen(More)
The use of intracellular alpha-galactosidase from Gibberella fujikuroi to remove raffinose and stachyose in soymilk was studied. The optimum conditions for the enzymic hydrolysis of raffinose and stachyose was pH 5.5 to 6.0 at 55 degrees C. Alpha-galactosidase showed optimum activity at pH 5.0 and 50 degrees C with the substrate(More)
Alpha-galactosidase was immobilized in a mixture of k-carrageenan and locust bean gum. The properties of the free and immobilized enzyme were then determined. The optimum pH for both the soluble and immobilized enzyme was 4.8. The optimum temperature for the soluble enzymes was 50 degrees C, whereas that for the immobilized enzyme was 55 degrees C. The(More)
Changes in trypsin and chymotrypsin inhibitory activity of sorghum (Sorghum bicolor L. Moench) seeds on soaking in distilled water, different salt solutions and mixed salt solution were investigated. A greater reduction in proteinase inhibitory activity was observed on soaking in salt solution than on soaking in distilled water. Maximum loss of trypsin and(More)
Comparisons were made for alpha-galactosidase production using red gram plant waste (RGPW) with wheat bran (WB) and other locally available substrates using the fungus Aspergillus oryzae under solid-state fermentation (SSF). RGPW proved to be potential substrate for alpha-galactosidase production as it gave higher enzyme titers (3.4 U/g) compared to WB (2.7(More)
The aim of this work was to establish optimal conditions for the maximum production of endo-beta-1,4 mannanases using cheaper sources. Eight thermotolerant fungal strains were isolated from garden soil and compost samples collected in and around the Gulbarga University campus, India. Two strains were selected based on their ability to produce considerable(More)