Veena Krishnappa

Learn More
The emerging paradigm that MSCs are immune privileged has fostered the use of "off-the-shelf" allogeneic MSC-based therapies in human clinical trials. However, this approach ignores studies in experimental animals wherein transplantation of MSCs across MHC boundaries elicits measurable allo-immune responses. To determine if MSCs are hypo-immunogeneic, we(More)
Mesenchymal stem cells (MSCs) are known to differentiate into connective tissue lineages but intracellular signaling pathways that maintain cells in an undifferentiated state remain largely unexplored. Previously, we reported that fibroblast growth factor 2 (Fgf2) reversibly inhibited multilineage differentiation of primary mouse MSCs and now identify a(More)
Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that(More)
Because of the ability to manipulate their genome, mice are the experimental tool of choice for many areas of scientific investigation. Moreover, established experimental mouse models of human disease are widely available and offer a valuable resource to obtain proof-of-concept for many cell-based therapies. Nevertheless, efforts to establish reliable(More)
In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs) also exhibit potent effector (angiogenic, antiinflammatory, immuno-modulatory) functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties.(More)
Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for(More)
Mesenchymal stem/stromal cells (MSCs) are the predominant source of bone and adipose tissue in adult bone marrow and play a critical role in skeletal homeostasis. Age-induced changes in bone marrow favor adipogenesis over osteogenesis leading to skeletal involution and increased marrow adiposity so pathways that prevent MSC aging are potential therapeutic(More)
  • 1