Veaceslav Coropceanu

Learn More
2.2. Materials 929 2.3. Factors Influencing Charge Mobility 931 2.3.1. Molecular Packing 931 2.3.2. Disorder 932 2.3.3. Temperature 933 2.3.4. Electric Field 934 2.3.5. Impurities 934 2.3.6. Pressure 934 2.3.7. Charge-Carrier Density 934 2.3.8. Size/molecular Weight 935 3. The Charge-Transport Parameters 935 3.1. Electronic Coupling 936 3.1.1. The(More)
Our objective in this Account is 3-fold. First, we provide an overview of the optical and electronic processes that take place in a solid-state organic solar cell, which we define as a cell in which the semiconducting materials between the electrodes are organic, be them polymers, oligomers, or small molecules; this discussion is also meant to set the(More)
The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60)(More)
The crystal structure of a cyanine dye rotaxane shows that the cyclodextrin is tightly threaded round the polymethine bridge of the dye; encapsulation dramatically increases the kinetic chemical stability of the radicals formed on oxidation and reduction of the dye, making it possible to observe the rotaxane radical dication by ESR and UV-vis-NIR(More)
The molecular parameters governing charge transport along a pi-stacked fluorene chain in poly(dibenzofulvene) are studied by a joint experimental and theoretical approach involving high-resolution gas-phase photoelectron spectroscopy and quantum-mechanical methods. We specifically investigate the electronic couplings between fluorene moieties as well as the(More)
The characteristics of the electronic excited states and the charge-transfer processes at organic-organic interfaces play an important role in organic electronic devices. However, charge-transfer excitations have proven challenging to describe with conventional density functional theory (DFT) methodologies due to the local nature of the exchange-correlation(More)
We describe at the quantum-chemical level the main parameters that control charge transport at the molecular scale in discotic liquid crystals. The focus is on stacks made of triphenylene, hexaazatriphenylene, hexaazatrinaphthylene, and hexabenzocoronene molecules and derivatives thereof. It is found that a subtle interplay between the chemical structure of(More)
The reorganization energy in pentacene is reported on the basis of a joint experimental and theoretical study of pentacene ionization using high-resolution gas-phase photoelectron spectroscopy, semiempirical intermediate neglect of differential overlap calculations, and first-principles correlated quantum-mechanical calculations at MP2 and density(More)
We report the synthesis and characterization of "bistetracene", an unconventional, linearly extended conjugated core with eight fused rings. The annellation mode of the system allows for increased stability of the conjugated system relative to linear analogues due to the increased number of Clar aromatic sextets. By attaching the appropriate solubilizing(More)