Learn More
When organisms adapt genetically to one environment, they may lose fitness in other environments. Two distinct population genetic processes can produce ecological specialization-mutation accumulation and antagonistic pleiotropy. In mutation accumulation, mutations become fixed by genetic drift in genes that are not maintained by selection; adaptation to one(More)
For more than two decades there has been intense debate over the hypothesis that most morphological evolution occurs during relatively brief episodes of rapid change that punctuate much longer periods of stasis. A clear and unambiguous case of punctuated evolution is presented for cell size in a population of Escherichia coli evolving for 3000 generations(More)
In bacterial genomes composed of more than one chromosome, one replicon is typically larger, harbors more essential genes than the others, and is considered primary. The greater variability of secondary chromosomes among related taxa has led to the theory that they serve as an accessory genome for specific niches or conditions. By this rationale, purifying(More)
The material, including all portions thereof, is protected by copyright; all rights are held exclusively by Springer Science + Business Media. The material is for personal use only; commercial use is not permitted. Unauthorized reproduction, transfer and/or use may be a violation of criminal as well as civil law. Breaking the language barrier: experimental(More)
Spontaneous mutations are ultimately essential for evolutionary change and are also the root cause of many diseases. However, until recently, both biological and technical barriers have prevented detailed analyses of mutation profiles, constraining our understanding of the mutation process to a few model organisms and leaving major gaps in our understanding(More)
In bacterial chromosomes, the position of a gene relative to the single origin of replication generally reflects its replication timing, how often it is expressed, and consequently, its rate of evolution. However, because some archaeal genomes contain multiple origins of replication, bias in gene dosage caused by delayed replication should be minimized and(More)
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an(More)
BACKGROUND Twelve populations of the bacterium, Escherichia coli, adapted to a simple, glucose-limited, laboratory environment over 10,000 generations. As a consequence, these populations tended to lose functionality on alternative resources. I examined whether these populations in turn became inferior competitors in four alternative environments. These(More)
The fitness effect of mutations can be influenced by their interactions with the environment, other mutations, or both. Previously, we constructed 32 ( = 2⁵) genotypes that comprise all possible combinations of the first five beneficial mutations to fix in a laboratory-evolved population of Escherichia coli. We found that (i) all five mutations were(More)
It has become clear that different genome regions need not evolve uniformly. This variation is particularly evident in bacterial genomes with multiple chromosomes, in which smaller, secondary chromosomes evolve more rapidly. We previously demonstrated that substitution rates and gene dispensability were greater on secondary chromosomes in many bacterial(More)