Learn More
The reversible phosphorylation of proteins on serine, thre-onine, and tyrosine residues represents a fundamental strategy used by eukaryotic organisms to regulate a host of biological functions, including DNA replication, cell cycle progression, energy metabolism, and cell growth and differentiation. Levels of cellular protein phosphorylation are modulated(More)
Autophosphorylation of a critical residue in the activation loop of several protein kinases is an essential maturation event required for full enzyme activity. However, the molecular mechanism by which this happens is unknown. We addressed this question for two dual-specificity tyrosine-phosphorylation-regulated protein kinases (DYRKs), as they(More)
Glycogen synthase kinase 3 (GSK3), a key component of the insulin and wnt signaling pathways, is unusual, as it is constitutively active and is inhibited in response to upstream signals. Kinase activity is thought to be increased by intramolecular phosphorylation of a tyrosine in the activation loop (Y216 in GSK3beta), whose timing and mechanism is(More)
To elucidate the signal transduction mechanisms used by ligands that induce differentiation and the cessation of cell division, we utilized p13suc1-agarose, a reagent that binds p34cdc2/cdk2. By using this reagent, we identified a 78- to 90-kDa species in PC12 pheochromocytoma cells that is rapidly phosphorylated on tyrosine following treatment with the(More)
To identify novel proteins capable of associating with the Raf-1 serine/threonine kinase, we investigated whether Raf-1 could interact with the Src homology 2 (SH2) domains of various signal-transducing molecules. In this report, we demonstrate that Raf-1 associated with the SH2 domain of Fyn (a member of the Src tyrosine kinase family) but not with the SH2(More)
The DYRKs (dual specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that autophosphorylate a tyrosine residue in their activation loop by an intra-molecular mechanism and phosphorylate exogenous substrates on serine/threonine residues. Little is known about the identity of true substrates for DYRK family members(More)
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) autophosphorylate an essential tyrosine residue in their activation loop and phosphorylate their substrates on serine and threonine residues. Phosphorylation of the activation loop tyrosine occurs intramolecularly, is mediated by a short-lived transitional intermediate during protein(More)
In Drosophila, specification of embryonic terminal cells is controlled by the Torso receptor tyrosine kinase. Here, we analyze the molecular basis of positive (Y630) and negative (Y918) phosphotyrosine (pY) signaling sites on Torso. We find that the Drosophila homolog of RasGAP associates with pY918 and is a negative effector of Torso signaling. Further, we(More)
The nucleic acid binding domain of the adenovirus type 2 (or type 5) DNA-binding protein (DBP) was characterized by using limited proteolysis and photochemical cross-linking. Three proteases were used to generate fragments of DBP which retained the ability to bind to single-stranded DNA. One fragment, a 35-kDa tryptic product, was partially sequenced and(More)
Specification of cell fates in the nonsegmented terminal regions of developing Drosophila embryos is under the control of a signal transduction pathway mediated by the receptor tyrosine kinase Torso (Tor). Here, we identify tyrosines (Y) 630 and 918 as the major sites of Tor autophosphorylation. We demonstrate that mutation of Y630, a site required for(More)