Vaughan G. Macefield

Learn More
1. The development of microneurography, in which an insulated tungsten microelectrode is inserted into an accessible peripheral or cranial nerve in awake human subjects, has allowed detailed analyses of the signalling capacities of single mechanoreceptive afferents from the skin, muscles and joints. For example, we know much about how the two classes of(More)
To understand the central neural processes involved in blood pressure regulation we recorded muscle sympathetic nerve activity (MSNA) via a tungsten microelectrode in the common peroneal nerve while performing functional magnetic resonance imaging (fMRI) of the brainstem at 3T. Blood oxygen level dependent (BOLD) changes in signal intensity were measured(More)
We have previously demonstrated that selective modulation of vestibular inputs, via sinusoidal galvanic vestibular stimulation (GVS) delivered at 0.5-0.8 Hz, can cause partial entrainment of muscle sympathetic nerve activity (MSNA). Given that we had seen interaction between the dynamic vestibular input and the normal cardiac-locked MSNA rhythm, we tested(More)
There is controversy as to whether the vestibulosympathetic reflexes demonstrated in experimental animals actually exist in human subjects. While head-down neck flexion and off-vertical axis rotation can increase muscle sympathetic nerve activity (MSNA) in awake subjects, we recently showed that bipolar galvanic vestibular stimulation (GVS) does not.(More)
For over three decades, the technique of microneurography has allowed us to record sympathetic neural outflow directly from postganglionic axons in awake human subjects. But because sympathetic axons are clustered within a nerve fascicle, such recordings have been limited to the analysis of multi-unit neural activity. To improve the information content of(More)
We have previously shown that sinusoidal galvanic vestibular stimulation (sGVS), a means of a selectively modulating vestibular afferent input without affecting other inputs, can cause partial entrainment of muscle sympathetic nerve activity (MSNA). Given that motion sickness causes sweating and pallor, we tested the hypothesis that sGVS also entrains skin(More)
We tested the hypothesis that vestibular and cardiac rhythms compete to modulate muscle sympathetic nerve activity (MSNA) in human subjects. Sinusoidal galvanic vestibular stimulation was applied across the mastoid processes at each subject's cardiac frequency and at ±0.1, ±0.2, ±0.3 and ±0.6 Hz. Cyclic modulation of MSNA was weakest at this central(More)
There is evidence in experimental animals for a potent vestibulosympathetic reflex, but its existence in humans is controversial. Static head-down neck flexion and off-vertical axis rotation have been shown to increase muscle sympathetic nerve activity (MSNA), but not skin sympathetic nerve activity (SSNA), whereas horizontal linear acceleration decreases(More)
Static isometric exercise increases muscle sympathetic nerve activity (MSNA) and mean arterial pressure, both of which can be maintained at the conclusion of the exercise by occlusion of the arterial supply [postexercise ischemia (PEI)]. To identify the cortical and subcortical sites involved, and to differentiate between central command and reflex inputs,(More)
The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents(More)