Learn More
Microglia, the intrinsic macrophages of the central nervous system, have previously been shown to be activated in the spinal cord in several rat mononeuropathy models. Activation of microglia and subsequent release of proinflammatory cytokines are known to play a role in inducing a behavioral hypersensitive state (hyperalgesia and allodynia) in these(More)
Peripheral inflammation induces central sensitization characterized by the development of allodynia and hyperalgesia to mechanical and thermal stimuli. Recent evidence suggests that activation of glial cells and a subsequent increase in proinflammatory cytokines contribute to the development of behavioral hypersensitivity after nerve injury or peripheral(More)
Hypersensitivity resulting from nerve injury or morphine tolerance/hyperalgesia is predicted to involve similar cellular and molecular mechanisms. One expected but incompletely explored mechanism is the activation of central neuroimmune responses associated with these conditions. To begin to address this, we undertook three separate studies: First, we(More)
The activation of glial cells and enhanced proinflammatory cytokine expression at the spinal cord has been implicated in the development of morphine tolerance, and morphine withdrawal-induced hyperalgesia. The present study investigated the effect of propentofylline, a glial modulator, on the expression of analgesic tolerance and withdrawal-induced(More)
Activated spinal glial cells have been strongly implicated in the development and maintenance of persistent pain states following a variety of stimuli including traumatic nerve injury. The present study was conducted to characterize the time course of surface markers indicative of microglial and astrocytic activation at the transcriptional level following(More)
Injury to peripheral nerves often produces non-physiological, long-lasting spontaneous pain, hyperalgesia and allodynia that are refractory to standard treatment and often insensitive to opioids, such as morphine. Recent studies demonstrate spinal glial activation and increased proinflammatory cytokines in animal models of neuropathic pain. When these data(More)
Several reports have indicated that melatonin modulates striatal dopaminergic functions via its interaction with central and peripheral benzodiazepine (BZ) receptors. Clinical reports and animal studies speculated on the possible involvement of melatonin in the pathophysiology of tardive dyskinesia (TD). In view of this, the present experiment was performed(More)
The possible antidepressant effect of physiological and pharmacological doses of melatonin was investigated in the Porsolt forced swimming-induced behavioral despair test. The duration of immobility period of BALB/c and C57BL/6J mice during a 6-min swim test was measured at noon (11:00-12:00 h), early dark (20:00-21:00 h) and at midnight (1:00-2:00 h),(More)
Serotonin type 2A (5-HT(2A)) receptor-mediated neurotransmitter is known to activate hypothalamic-pituitary-adrenal (HPA) axis, regulate sleep-awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT(2A) receptors in the regulation of the sleep-awake cycle and head-twitch response in rat have been reported. Previous studies have(More)
S100beta is a calcium-binding peptide produced mainly by astrocytes that exerts paracrine and autocrine effects on neurons and glia. We have previously shown that S100beta is markedly elevated at the mRNA level in the spinal cord following peripheral inflammation, intraplantar administration of complete Freund's adjuvant in the rat. The purpose of the(More)