Vasudeva Mahavisno

Learn More
A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly(More)
Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and(More)
DNA microarrays have been widely applied to cancer transcriptome analysis. The Oncomine database contains a large collection of such data, as well as hundreds of derived gene-expression signatures. We studied the regulatory mechanisms responsible for gene deregulation in these cancer signatures by searching for the coordinate regulation of genes with common(More)
MOTIVATION The elucidation of biological concepts enriched with differentially expressed genes has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources, and to explore results(More)
The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood, including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways. We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated via DNA methylation across cancer types. The(More)
  • 1