Vassilis P. Panoskaltsis

Learn More
Mechanical properties of living cells can be determined using atomic force microscopy (AFM). In this study, a novel analysis was developed to determine the mechanical properties of adherent monolayers of pulmonary microvascular endothelial cells (ECs) using AFM and finite element modeling, which considers both the finite thickness of ECs and their nonlinear(More)
Accurate prediction of plantar shear stress and internal stress in the soft tissue layers of the foot using finite element models would provide valuable insight into the mechanical etiology of neuropathic foot ulcers. Accurate prediction of the internal stress distribution using finite element models requires that realistic descriptions of the material(More)
This paper studies the transformation properties of the spatial balance of energy equation for a dissipative material, under the superposition of arbitrary spatial diffeomorphisms. The study reveals that for a dissipative material the transformed energy balance equation has some non-standard terms in it. These terms are related to a system of microforces(More)
  • 1