Learn More
Diverse molecules, from small antibacterial drugs to large protein toxins, are exported directly across both cell membranes of gram-negative bacteria. This export is brought about by the reversible interaction of substrate-specific inner-membrane proteins with an outer-membrane protein of the TolC family, thus bypassing the intervening periplasm. Here we(More)
Bacteria like Escherichia coli and Pseudomonas aeruginosa expel drugs via tripartite multidrug efflux pumps spanning both inner and outer membranes and the intervening periplasm. In these pumps a periplasmic adaptor protein connects a substrate-binding inner membrane transporter to an outer membrane-anchored TolC-type exit duct. High-resolution structures(More)
The toxin HlyA is exported from Escherichia coli, without a periplasmic intermediate, by a type I system comprising an energized inner-membrane (IM) translocase of two proteins, HlyD and the traffic ATPase HlyB, and the outer-membrane (OM) porin-like TolC. These and the toxin substrate were expressed separately to reconstitute export and, via affinity tags(More)
TolC is an outer membrane protein required for the export of virulence proteins and toxic compounds without a periplasmic intermediate. We show that TolC is an integral part of the translocator, interacting with inner membrane components, by demonstrating a need for TolC in protein export not only from intact cells but also from sphaeroplasts. To establish(More)
Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease worldwide. Pathogen adherence to host cells induces reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. This requires two bacterial virulence factors that mimic a ligand-receptor interaction. EPEC delivers its own receptor, the(More)
Multidrug resistance among Gram-negative bacteria is conferred by three-component membrane pumps that expel diverse antibiotics from the cell. These efflux pumps consist of an inner membrane transporter such as the AcrB proton antiporter, an outer membrane exit duct of the TolC family, and a periplasmic protein known as the adaptor. We present the x-ray(More)
Salmonella causes severe gastroenteritis in humans, entering non-phagocytic cells to initiate intracellular replication. Bacterial engulfment occurs by macropinocytosis, which is dependent upon nucleation of host cell actin polymerization and condensation ('bundling') of actin filaments into cables. This is stimulated by contact-induced delivery of an array(More)
The RfaH protein controls the transcription of a specialized group of Escherichia coli and Salmonella operons that direct the synthesis, assembly and export of the lipopolysaccharide core, exopolysaccharide, F conjugation pilus and haemolysin toxin. RfaH is a specific regulator of transcript elongation; its loss increases transcription polarity in these(More)
Hemolysin of Escherichia coli is activated by fatty acylation of the protoxin, directed by the putative acyl transferase HlyC and by acyl carrier protein (ACP). Mass spectrometry and Edman degradation of proteolytic products from mature toxin activated in vitro with tritium-labeled acylACP revealed two fatty-acylated internal lysine residues, lysine 564 and(More)
We have studied the C-terminal signal which directs the complete export of the 1024-amino-acid hemolysin protein (HlyA) of Escherichia coli across both bacterial membranes into the surrounding medium. Isolation and sequencing of homologous hlyA genes from the related bacteria Proteus vulgaris and Morganella morganii revealed high primary sequence divergence(More)