Learn More
Diverse molecules, from small antibacterial drugs to large protein toxins, are exported directly across both cell membranes of gram-negative bacteria. This export is brought about by the reversible interaction of substrate-specific inner-membrane proteins with an outer-membrane protein of the TolC family, thus bypassing the intervening periplasm. Here we(More)
Bacteria like Escherichia coli and Pseudomonas aeruginosa expel drugs via tripartite multidrug efflux pumps spanning both inner and outer membranes and the intervening periplasm. In these pumps a periplasmic adaptor protein connects a substrate-binding inner membrane transporter to an outer membrane-anchored TolC-type exit duct. High-resolution structures(More)
The toxin HlyA is exported from Escherichia coli, without a periplasmic intermediate, by a type I system comprising an energized inner-membrane (IM) translocase of two proteins, HlyD and the traffic ATPase HlyB, and the outer-membrane (OM) porin-like TolC. These and the toxin substrate were expressed separately to reconstitute export and, via affinity tags(More)
Multidrug resistance among Gram-negative bacteria is conferred by three-component membrane pumps that expel diverse antibiotics from the cell. These efflux pumps consist of an inner membrane transporter such as the AcrB proton antiporter, an outer membrane exit duct of the TolC family, and a periplasmic protein known as the adaptor. We present the x-ray(More)
TolC is an outer membrane protein required for the export of virulence proteins and toxic compounds without a periplasmic intermediate. We show that TolC is an integral part of the translocator, interacting with inner membrane components, by demonstrating a need for TolC in protein export not only from intact cells but also from sphaeroplasts. To establish(More)
Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with(More)
Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease worldwide. Pathogen adherence to host cells induces reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. This requires two bacterial virulence factors that mimic a ligand-receptor interaction. EPEC delivers its own receptor, the(More)
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and(More)
The bacterial TolC protein plays a common role in the expulsion of diverse molecules, which include protein toxins and antibacterial drugs, from the cell. TolC is a trimeric 12-stranded alpha/beta barrel, comprising an alpha-helical trans-periplasmic tunnel embedded in the outer membrane by a contiguous beta-barrel channel. This structure establishes a 140(More)
Bacteria such as Escherichia coli and Pseudomonas aeruginosa expel antibiotics and other inhibitors via tripartite multidrug efflux pumps spanning the inner and outer membranes and the intervening periplasmic space. A key event in pump assembly is the recruitment of an outer membrane-anchored TolC exit duct by the adaptor protein of a cognate inner membrane(More)