Learn More
The paper presents a knowledge-based system ~KBS! for the conceptual design of grippers for handling fabrics. Its main purpose is the integration of the domain knowledge in a single system for the systematic design of this type of grippers. The knowledge presented, in terms of gripper, material and handling process, are classified. The reasoning strategy is(More)
The present paper presents a system used for performing design by making extended use of soft computing techniques. Throughout the paper the design of robotic grippers for flexible materials is used as a reference design case in both its conceptual and detailed design phases. The system contains three modules. The first module focuses on the conceptual(More)
This paper proposes to use a knowledge acquisition (KA) approach based on Nested Ripple Down Rules (NRDR) to assist in mechanical design focusing on dimensional tolerancing. A knowledge approach to incrementally model expert design processes is implemented. The knowledge is acquired in the context of its use, which substantially supports the KA process. The(More)
Designing a reconfigurable manufacturing robotic workcell is a complex and resource demanding procedure. In this work a multi criteria index is introduced, allowing the designer to evaluate the various anatomies achieved by a reconfigurable manipulator, and to define the area in the manipulator's configuration space where a task can be accomplished with(More)
This paper addresses the problem of providing feedback to the operator about the manipulator's performance during human-robot physical interaction. A method is proposed that implements virtual constraints in Cartesian admittance control in order to prevent the operator from guiding the manipulator to low-performance configurations. The constraints are(More)
  • 1