Learn More
Sparse representation of signals has been the focus of much research in the recent years. A vast majority of existing algorithms deal with vectors, and higher–order data like images are dealt with by vector-ization. However, the structure of the data may be lost in the process, leading to a poorer representation and overall performance degradation. In this(More)
One of the most important tasks for mobile robots is to sense their environment. Further tasks might include the recognition of objects in the surrounding environment. Three dimensional range finders have become the sensors of choice for mapping the environment of a robot. Recognizing objects in point clouds provided by such sensors is a difficult task. The(More)
The current security infrastructure can be summarized as follows: (1) Security systems act locally and do not cooperate in an effective manner, (2) Very valuable assets are protected inadequately by antiquated technology systems and (3) Security systems rely on intensive human concentration to detect and assess threats. In this paper we present DETER(More)
Autonomous estimation of the altitude of an Unmanned Aerial Vehicle (UAV) is extremely important when dealing with flight maneuvers like landing, steady flight, etc. Vision based techniques for solving this problem have been underutilized. In this paper, we propose a new algorithm to estimate the altitude of a UAV from top-down aerial images taken from a(More)
A framework for robust foreground detection that works under difficult conditions such as dynamic background and moderately moving camera is presented in this paper. The proposed method includes two main components: coarse scene representation as the union of pixel layers, and foreground detection in video by propagating these layers using a(More)
Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for positive definite matrices. While in earlier work [1], the(More)
We study Nearest Neighbors (NN) retrieval by introducing a new approach: Robust Sparse Hashing (RSH). Our approach is inspired by the success of dictionary learning for sparse coding; the key innovation is to use learned sparse codes as hashcodes for speeding up NN. But sparse coding suffers from a major drawback: when data are noisy or uncertain, for a(More)
Video object segmentation is a challenging problem due to the presence of deformable, connected, and articulated objects, intra-and inter-object occlusions, object motion, and poor lighting. Some of these challenges call for object models that can locate a desired object and separate it from its surrounding background, even when both share similar colors(More)
Clinical studies confirm that mental illnesses such as autism, Obsessive Compulsive Disorder (OCD), etc. show behavioral abnormalities even at very young ages; the early diagnosis of which can help steer effective treatments. Most often, the behavior of such at-risk children deviate in very subtle ways from that of a normal child; correct diagnosis of which(More)