Vasily Zhakhovsky

Learn More
A theoretical framework to study linear and nonlinear Richtmyer-Meshkov instability (RMI) is presented. This instability typically develops when an incident shock crosses a corrugated material interface separating two fluids with different thermodynamic properties. Because the contact surface is rippled, the transmitted and reflected wavefronts are also(More)
Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser(More)
The evolution of orientation-dependent metastable states during shock-induced solid-liquid phase transitions in crystalline Al is followed using moving window molecular dynamics simulations. The orientation-dependent transition pathways towards an orientation-independent final state Hugoniot include both "cold melting" followed by recrystallization in(More)
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the(More)
Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather(More)
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that(More)
The development of condensed-phase detonation instabilities is simulated using moving window molecular dynamics and a generic AB model of a high explosive. It is found that an initially planar detonation front with one-dimensional flow can become unstable through development of transverse perturbations resulting in highly inhomogeneous and complex two- and(More)
  • 1