#### Filter Results:

- Full text PDF available (76)

#### Publication Year

1993

2017

- This year (2)
- Last 5 years (5)
- Last 10 years (31)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Vasily E Tarasov
- Chaos
- 2005

We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck… (More)

We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the ‘‘fractional’’ continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier–Stokes and Euler… (More)

We use the fractional integrals to describe fractal solid. We suggest to consider the fractal solid as special (fractional) continuous medium. We replace the fractal solid with fractal mass dimension by some continuous model that is described by fractional integrals. The fractional integrals are considered as approximation of the integrals on fractals. We… (More)

- Vasily E Tarasov, George M Zaslavsky
- Chaos
- 2006

We consider a one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction. The corresponding term in dynamical equations is proportional to 1//n-m/alpha+1. It is shown that the equation of motion in the infrared limit can be transformed into the medium equation with the Riesz fractional derivative of order alpha,… (More)

We consider the description of the fractal media that uses the fractional integrals. We derive the fractional generalizations of the equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. The fractional equation of continuity is considered. PACS: 05.45.Df; 47.53.+n;… (More)

The one-dimensional chain of coupled oscillators with long-range power-law interaction is considered. The equation of motion in the infrared limit are mapped onto the continuum equation with the Riesz fractional derivative of order α, when 0 < α < 2. The evolution of soliton-like and breather-like structures are obtained numerically and compared for both… (More)

- Vasily E Tarasov
- 2006

Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler–Lagrange equations are derived. Fractional equations are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives. PACS numbers: 45.20.−d,… (More)

Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous… (More)

The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of… (More)

We consider the class of non-Hamiltonian and dissipative statistical systems with distributions that are determined by the Hamiltonian. The distributions are derived analytically as stationary solutions of the Liouville equation for non-Hamiltonian systems. The class of non-Hamiltonian systems can be described by a non-holonomic (non-integrable) constraint:… (More)