Vasileios Vavourakis

Learn More
The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific(More)
An implicit non-linear finite element (FE) numerical procedure for the simulation of biological muscular tissues is presented. The method has been developed for studying the motion of muscular hydrostats, such as squid and octopus arms and its general framework is applicable to other muscular tissues. The FE framework considered is suitable for the dynamic(More)
Abdominal aortic aneurysm wall distensibility can be estimated by measuring pulse pressure and the corresponding sac volume change, which can be obtained by measuring wall displacement. This approach, however, may introduce error if the role of thrombus in assisting the wall in bearing the pulse pressure loading is neglected. Our aim was to introduce a(More)
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the(More)
Surgical treatment for early-stage breast carcinoma primarily necessitates breast conserving therapy (BCT), where the tumour is removed while preserving the breast shape. To date, there have been very few attempts to develop accurate and efficient computational tools that could be used in the clinical environment for pre-operative planning and oncoplastic(More)
Physically realistic patient-specific biomechanical modelling is of paramount importance for many medical applications, where the geometry of tissues or organs is usually constructed from in vivo images. However, it is common for such biological structures to correspond to a deformed state due to being under external loadings. This necessitates the(More)
Prone-to-supine breast image registration has potential application in the fields of surgical and radiotherapy planning, image guided interventions, and multi-modal cancer diagnosis, staging, and therapy response prediction. However, breast image registration of three dimensional images acquired in different patient positions is a challenging problem, due(More)
  • 1