Varun Ganapathi

Learn More
Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model — which is achievable in this setting using programmable graphics hardware — with a discriminative(More)
Markov networks are widely used in a wide variety of applications, in problems ranging from computer vision, to natural language, to computational biology. In most current applications, even those that rely heavily on learned models, the structure of the Markov network is constructed by hand, due to the lack of effective algorithms for learning Markov(More)
We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points(More)
Tracking human pose in real-time is a difficult problem with many interesting applications. Existing solutions suffer from a variety of problems, especially when confronted with unusual human poses. In this paper, we derive an algorithm for tracking human pose in real-time from depth sequences based on MAP inference in a probabilistic temporal model. The(More)
Helicopters have highly stochastic, nonlinear, dynamics, and autonomous helicopter flight is widely regarded to be a challenging control problem. As helicopters are highly unstable at low speeds, it is particularly difficult to design controllers for low speed aerobatic maneuvers. In this paper, we describe a successful application of reinforcement learning(More)
We consider the problem of modeling a helicopter’s dynamics based on state-action trajectories collected from it. The contribution of this paper is two-fold. First, we consider the linear models such as learned by CIFER (the industry standard in helicopter identification), and show that the linear parameterization makes certain properties of dynamical(More)
In this paper, we present a novel grasp selection algorithm to enable a robot with a two-fingered end-effector to autonomously grasp unknown objects. Our approach requires as input only the raw depth data obtained from a single frame of a 3D sensor. Additionally, our approach uses no explicit models of the objects and does not require a training phase. We(More)
Parameter estimation in Markov random fields (MRFs) is a difficult task, in which inference over the network is run in the inner loop of a gradient descent procedure. Replacing exact inference with approximate methods such as loopy belief propagation (LBP) can suffer from poor convergence. In this paper, we provide a different approach for combining MRF(More)
Navigating websites is often a frustrating process: Website visitors, despite their widely varying and individual information-seeking needs, must contend with static, general-purpose link structures that have been set in place by website owners. Because many visitors tend to browse for the same content, they are individually repeating the same navigation(More)