Vartan Kurtcuoglu

Learn More
Endothelial adherens junctions maintain vascular integrity. Arteries and veins differ in their permeability but whether organization and strength of their adherens junctions vary has not been demonstrated in vivo. Here we report that vascular endothelial cadherin, an endothelial specific adhesion protein located at adherens junctions, is phosphorylated in(More)
The work herein represents a novel approach for the modeling of low-density lipoprotein (LDL) transport from the artery lumen into the arterial wall, taking into account the effects of local wall shear stress (WSS) on the endothelial cell layer and its pathways of volume and solute flux. We have simulated LDL transport in an axisymmetric representation of a(More)
This study aims at investigating three-dimensional subject-specific cerebrospinal fluid (CSF) dynamics in the inferior cranial space, the superior spinal subarachnoid space (SAS), and the fourth cerebral ventricle using a combination of a finite-volume computational fluid dynamics (CFD) approach and magnetic resonance imaging (MRI) experiments. An(More)
Understanding and accelerating the mechanisms of endothelial wound healing is of fundamental interest for biotechnology and of significant medical utility in repairing pathologic changes to the vasculature induced by invasive medical interventions. We report the fundamental mechanisms that determine the influence of substrate topography and flow on the(More)
A computational fluid dynamics (CFD) model of the cerebrospinal fluid system was constructed based on a simplified geometry of the brain ventricles and their connecting pathways. The flow is driven by a prescribed sinusoidal motion of the third ventricle lateral walls, with all other boundaries being rigid. The pressure propagation between the third and(More)
BACKGROUND Average wall shear-stress (AWSS), average wall shear-stress gradient (AWSSG), oscillatory shear index (OSI) and relative residence time (RRT) are believed to predict areas vulnerable to plaque formation in the coronary arteries. Our aim was to analyze the correlation of these parameters in patients' vessels before the onset of atherosclerosis to(More)
The cerebrospinal fluid flow in the third ventricle of the brain and the aqueduct of Sylvius was studied using computational fluid dynamics (CFD) based on subject-specific boundary conditions derived from magnetic resonance imaging (MRI) scans. The flow domain geometry was reconstructed from anatomical MRI scans by manual image segmentation. The movement of(More)
Knowledge of the normal in vivo distribution and variation of coronary ostial locations is essential in the planning of various interventional and surgical procedures. However, all studies to date have reported the distribution of coronary ostia locations only in cadaver hearts. In this study, we sought to assess the distribution of coronary ostial(More)
Cell motility contributes to the formation of organs and tissues, into which multiple cells self-organize. However such mammalian cellular motilities are not characterized in a quantitative manner and the systemic consequences are thus unknown. A mathematical tool to decipher cell motility, accounting for changes in cell shape, within a three-dimensional(More)
Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that(More)