Varnavas D. Mouchlis

Learn More
Molecular docking, classification techniques, and 3D-QSAR CoMSIA were combined in a multistep framework with the ultimate goal of identifying potent pyrimidine-urea inhibitors of TNF-α production. Using the crystal structure of p38α, all the compounds were docked into the enzyme active site. The docking pose of each compound was subsequently used in a(More)
Docking calculations that allow the estimation of the binding energy of small ligands in the GIIA sPLA(2) active site were used in a structure-based design protocol. Four GIIA sPLA(2) inhibitors co-crystallised with the enzyme, were used for examining the enzyme active site and for testing the FlexX in SYBYL 6.8 molecular docking program to reproduce the(More)
Group VI Ca²⁺-independent phospholipase A₂ (iPLA₂) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA₂ or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and(More)
The phospholipase A(2) (PLA(2)) superfamily consists of different groups of enzymes which are characterized by their ability to catalyze the hydrolysis of the sn-2 ester bond in a variety of phospholipid molecules. The products of PLA(2s) activity play divergent roles in a variety of physiological processes. There are four main types of PLA(2s): the(More)
Automated docking allowing a "protein-based" alignment was performed on a set of indole inhibitors of the GIIA secreted phospholipase A(2) (GIIA sPLA(2)). A correlation between the binding scores and the experimental inhibitory activity was observed (r(2) = 0.666, N = 34). All the indole inhibitors were docked in the active site of the GIIA sPLA(2) enzyme,(More)
Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein-lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying(More)
Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding(More)
The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In(More)
Studying phospholipases A2 (PLA2s) is a challenging task since they act on membrane-like aggregated substrates and not on monomeric phospholipids. Multidisciplinary approaches that include hydrogen/deuterium exchange mass spectrometry (DXMS) and computational techniques have been employed with great success in order to address important questions about the(More)
The group IVA cytosolic phospholipase A(2) (GIVA cPLA(2)) plays a central role in inflammation. Long chain 2-oxoamides constitute a class of potent GIVA cPLA(2) inhibitors that exhibit potent in vivo anti-inflammatory and analgesic activity. We have now gained insight into the binding of 2-oxoamide inhibitors in the GIVA cPLA(2) active site through a(More)