Varish Mulwad

Learn More
We describe work on automatically inferring the intended meaning of tables and representing it as RDF linked data, making it available for improving search, interoperability and integration. We present implementation details of a joint inference module that uses knowledge from the linked open data (LOD) cloud to jointly infer the semantics of column(More)
Much of the world’s knowledge is contained in structured documents like spreadsheets, database relations and tables in documents found on the Web and in print. The information in these tables might be much more valuable if it could be appropriately exported or encoded in RDF, making it easier to share, understand and integrate with other information. This(More)
Vast amounts of information is available in structured forms like spreadsheets, database relations, and tables found in documents and on the Web. We describe an approach that uses linked data to interpret such tables and associate their components with nodes in a reference linked data collection. Our proposed framework assigns a class (i.e. type) to table(More)
Most open government data is encoded and published in structured tables found in reports, on the Web, and in spreadsheets or databases. Current approaches to generating Semantic Web representations from such data requires human input to create schemas and often results in graphs that do not follow best practices for linked data. Evidence for a table’s(More)
The Web is an important source of information about computer security threats, vulnerabilities and cyber attacks. We present initial work on developing a framework to detect and extract information about vulnerabilities and attacks from Web text. Our prototype system uses Wikitology, a general purpose knowledge base derived from Wikipedia, to extract(More)
Vast amounts of information is encoded in tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning and making it explicit in a semantic representation language like RDF. Most current approaches to generating Semantic Web representations from(More)
Vast amounts of information is encoded in tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning and making it explicit in a semantic representation language like RDF. Most current approaches to generating Semantic Web representations from(More)
Evidence-based medicine is the application of current medical evidence to patient care and typically uses quantitative data from research studies. It is increasingly driven by data on the efficacy of drug dosages and the correlations between various medical factors that are assembled and integrated through meta-analyses (i.e., systematic reviews) of data in(More)
Vast amounts of information is encoded in structured tables found in documents, on the Web, and in spreadsheets or databases. Integrating or searching over this information benefits from understanding its intended meaning. Evidence for a table’s meaning can be found in its column headers, cell values, implicit relations between columns, caption and(More)