Learn More
We monitored developmental alterations in the morphology of dendritic spines in primary cultures of hippocampal neurons using confocal laser scanning microscopy (CLSM) and the fluorescent marker Dil. Dissociated rat hippocampal neurons were plated on polylysine-coated glass cover slips and grown in culture for 1-4 weeks. Fixed cultures were stained with Dil(More)
We have previously shown that estradiol causes a twofold rise in dendritic spine density in cultured rat hippocampal neurons, as it does in vivo. More recently, estrogen receptors have been localized to aspiny inhibitory hippocampal interneurons, indicating that their effect on spiny pyramidal neurons may be indirect. We therefore examined the possibility(More)
The role of afferent innervation in the formation of dendritic spines was studied in cultured rat striatum. The striatum is a unique structure in that it contains highly spiny GABAergic projection neurons, with no known local excitation. Grown alone in culture, striatal neurons did not express spontaneous network activity and were virtually devoid of(More)
The brain generates extensive spontaneous network activity patterns, even in the absence of extrinsic afferents. While the cognitive correlates of these complex activities are being unraveled, the rules that govern the generation, synchronization and spread of different patterns of intrinsic network activity in the brain are still enigmatic. Using(More)
Depletion of the forebrain serotonergic system was found in previous studies to induce an increased excitability of the dentate gyrus (DG) granule cells and, when combined with a cholinergic deficiency, to impair spatial learning. We now compared the effects of general forebrain serotonergic lesions induced by intracerebroventricular injection of(More)
Behavioral effects of septal lesion and fornix-fimbria transection were compared in absence and presence of a septal transplant in the hippocampus. The transplant grew in the hippocampus and projected acetylcholinesterase (AChE)-containing fibers throughout the extent of the denervated hippocampus. There were no differences in graft size or AChE(More)
Changes in cytosolic Na+ ([Na+]i) caused by a toxic glutamate (GLU) or NMDA treatment of cultured hippocampal neurons were monitored by using SBFI fluorescent probe and imaging microscopy. Both GLU and NMDA (50 or 100 microM in Mg(2+)-free solution, 15 min) induced a marked increase in [Na+]i (from 6-8 to 30-45 mM) which persisted after the termination of a(More)
Properties of the norepinephrine (NE) stimulated, cAMP-generating system were studied in rat hippocampal slices. NE but not other putative neurotransmitters, caused a 3--4-fold rise in cAMP levels in the slices. All 3 main subdivisions of the hippocampus (HPC), the dentate gyrus, areas CA3 and CA1, possessed the capacity to produce cAMP. The latency to the(More)
Dendritic morphology of 2-week-old cultured neurons, taken from postnatal day 1 fragile X mental retardation gene1 knock out (FMR1-/-) mice hippocampus, were compared with cells taken from wild type mice. Under control conditions the FMR1-/- neurons displayed significantly lower spine densities compared to wild type neurons. Pharmacological stimulation of(More)
Cholinergic M1 and M2 muscarinic receptors in aged and young rat brains were studied by quantitative autoradiography of tritiated QNB in the presence of pirenzepine or carbachol. A selective pattern of decreased binding density was observed in the aged rat. A large number of regions showed no effect of aging; these include subdivisions of the hippocampal(More)