Vanlalhriatpuia L Keny

Learn More
The effect of altitude on four basic properties of the pacemaker controlling the circadian rhythm of oviposition in two strains of Drosophila ananassae was determined. The high altitude (HA) strain from Badrinath (5123 m above sea level) had a low amplitude peak in the forenoon while the low altitude (LA) strain from Firozpur (179 m a.s.l.) had a high(More)
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21 degrees C, it was entrained by cycles of 12h light: 12h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13 degrees C or 17 degrees C under identical experimental conditions(More)
The properties of the pacemaker controlling the adult locomotor activity rhythm of the high-altitude Himalayan (haH) strain (Hemkund Sahib, 4121 m above sea level) of Drosophila helvetica are strikingly different from those of the low-altitude Himalayan (laH) strain (Birahi, 1132 m above sea level) of the same species. The haH strain has a unimodal activity(More)
The sensitivity of the circadian photoreceptors mediating entrainment of the eclosion rhythm and phase shifts of oviposition rhythm of the high altitude (HA) strain of Drosophila ananassae originating from Badrinath (5123 m above sea level) in the Himalayas was compared with the low altitude (LA) strain from Firozpur (179 m above sea level). Reduced photic(More)
In previous research, it was determined that the altitude of origin altered the parameters of photic entrainment and free-running rhythmicity of adult locomotor activity of the high-altitude Himalayan (haH) strain (Hemkund-Sahib, 4121 m above sea level) of Drosophila helvetica compared to the low-altitude Himalayan (laH) strain (Birahi, 1132 m above sea(More)
The effects of varying photophase and altitude of origin on the phase angle difference (Psi) of the circadian rhythm of oviposition during entrainment to light-dark (LD) cycles and the aftereffects of such photophases on the period of the free-running rhythm (tau) in constant darkness (DD) were evaluated in two Himalayan strains of Drosophila ananassae, the(More)
Phase-response curves (PRCs) for the circadian rhythm of flight activity of the microchiropteran bat (Hipposideros speoris) were determined in a cave, employing discrete natural dawn and dusk twilight pulses. These PRCs are reported for the first time for any circadian system and they are unlike other PRCs constructed for nocturnal mammals. Dawn and dusk(More)
  • 1