Learn More
Reduced NMDA receptor functioning is hypothesized to underlie the cognitive and negative symptoms associated with schizophrenia. However, because direct activation of the NMDA receptor is accompanied by neurotoxicity, mechanisms that activate the glycine co-agonist site on the NMDA receptor could carry greater therapeutic potential. In the current study,(More)
The current standards of care for Alzheimer’s disease, acetylcholinesterase inhibitors, have limited efficacy due to a host of mechanism-related side effects arising from indiscriminate activation of muscarinic and nicotinic receptors. The M1 muscarinic receptor is predominantly expressed in the brain in regions involved in cognition, and therefore(More)
The cognitive deficits associated with schizophrenia are recognized as a core component of the disorder, yet there remain no available therapeutics to treat these symptoms of the disease. As a result, there is a need for establishing predictive preclinical models to identify the therapeutic potential of novel compounds. In the present study, rhesus monkeys(More)
The standards of care for Alzheimer’s disease, acetylcholinesterase inhibitors such as donepezil (Aricept®), are dose-limited due to adverse side-effects. These adverse events lead to significant patient non-compliance, constraining the dose and magnitude of efficacy that can be achieved. Non-selective muscarinic receptor orthosteric agonists such as(More)
We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of(More)
CONTEXT Beta-arrestins are known to couple to some G-protein-coupled receptors (GPCRs) to regulate receptor internalization, G-protein coupling and signal transduction, but have not been investigated for most receptors, and for very few receptors in vivo. Previous studies have shown that beta-arrestin2 deletion enhances the efficacy of specific cannabinoid(More)
  • 1