Vanessa LeBert

Learn More
Vaccine immunity to the endemic mycoses of North America requires Th17 cells, but the pattern recognition receptors and signaling pathways that drive these protective responses have not been defined. We show that C-type lectin receptors exert divergent contributions to the development of antifungal Th17 cells and vaccine resistance against Blastomyces(More)
Soaring rates of systemic fungal infections worldwide underscore the need for vaccine prevention. An understanding of the elements that promote vaccine immunity is essential. We previously reported that Th17 cells are required for vaccine immunity to the systemic dimorphic fungi of North America, and that Card9 and MyD88 signaling are required for the(More)
We investigated how innate sensing by the mannose receptor (MR) influences the development of antifungal immunity. We demonstrate that MR senses mannan on the surface of attenuated Blastomyces dermatitidis vaccine yeast and that MR(-/-) mice demonstrate impaired vaccine immunity against lethal experimental blastomycosis, compared with wild-type control(More)
  • 1