Vanessa Claire Wood

  • Citations Per Year
Learn More
The purpose of the present study was to compare cardiac output (Q) values obtained by both the Kubicek (MIC) and Sramek (NCCOM3) impedance cardiographic techniques with thermodilution (TD) in critically ill patients. The two impedance techniques were also compared in normal subjects. Seven healthy subjects and ten ICU patients were enlisted in the study.(More)
PURPOSE To determine whether in-clerkship tests identify students with insufficient knowledge and whether counseling affects final examination pass rates. METHOD The authors reviewed students' mean scores from two internal medicine clerkship tests at the Wright State University School of Medicine from February 1993 to July 1996. To determine the(More)
High-energy-density materials that undergo conversion and/or alloying reactions hold promise for next-generation lithium (Li) ion batteries. However, these materials experience substantial volume change during electrochemical operation, which causes mechanical fracture of the material and structural disintegration of the electrode, leading to capacity loss.(More)
Adv. Mater. 2009, 21, 1–5 2009 WILEY-VCH Verlag Gmb We demonstrate print-deposition of high resolution, patterned, multicolored thin films of luminescent colloidal quantum dot (QD)-polymer composites and use the printed patterns in fabricating robust, bright, full-color AC-driven displays. The benefits of AC electroluminescent (EL) displays include simple,(More)
We implement three complementary techniques to quantify the number, energy, and electronic properties of trap states in nanocrystal (NC)-based devices. We demonstrate that, for a given technique, the ability to observe traps depends on the Fermi level position, highlighting the importance of a multitechnique approach that probes trap coupling to both the(More)
Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity,(More)
We investigate the effect of the electronic energy level positioning, conductivity, and morphology of metal oxide charge transport layers on the performance of light emitting devices (LEDs) that consist of a colloidally synthesized quantum dot (QD) luminescent film embedded between electron and hole injecting ceramic layers. We demonstrate that(More)
We present a novel technique for room temperature, solution-based fabrication of alternating current thin-film electroluminescent (AC-TFEL) devices using phosphor-doped nanocrystals. Synthesis for stable ZnSe/ZnS:Mn/ZnS nanocrystals that exhibit a quantum yield of 65 +/- 5% is outlined, and their electroluminescence is demonstrated in structures consisting(More)
Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors(More)
Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic-organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current-voltage characterization and thermal admittance spectroscopy to develop a(More)