Vanesa Fernández-Sáiz

Learn More
To gain further insight into the interactions involved in the allosteric transition of DnaK we have characterized wild-type (wt) protein and three mutants in which ionic interactions at the interface between the two subdomains of the substrate binding domain, and within the lid subdomain have been disrupted. Our data show that ionic contacts, most likely(More)
We examined the effect of deletion of different segments in the helical subdomain (the so-called "lid") of the DnaK peptide-binding domain on peptide binding and protein stability. At 25 degrees C, wt DnaK and the deletion mutant proteins are able to stably bind peptides with similar affinity. However, at physiological (37 degrees C) and stress (42 degrees(More)
Among the eukaryotic members of the Hsp70 family, mitochondrial Hsp70 shows the highest degree of sequence identity with bacterial DnaK. Although they share a functional mechanism and homologous co-chaperones, they are highly specific and cannot be exchanged between Escherichia coli and yeast mitochondria. To provide a structural basis for this finding, we(More)
The biological activity of DnaK, the bacterial representative of the Hsp70 protein family, is regulated by the allosteric interaction between its nucleotide and peptide substrate binding domains. Despite the importance of the nucleotide-induced cycling of DnaK between substrate-accepting and releasing states, the heterotropic allosteric mechanism remains as(More)
Thermal stress might lead to protein aggregation in the cell. Reactivation of protein aggregates depends on Hsp100 and Hsp70 chaperones. We focus in this study on the ability of DnaK, the bacterial representative of the Hsp70 family, to interact with different aggregated model substrates. Our data indicate that DnaK binding to large protein aggregates is(More)
  • 1