Learn More
We derive a general model, based on principles of biochemical kinetics and allometry, that characterizes the effects of temperature and body mass on metabolic rate. The model fits metabolic rates of microbes, ectotherms, endotherms (including those in hibernation), and plants in temperatures ranging from 0 degrees to 40 degrees C. Mass- and(More)
For at least 200 years, since the time of Malthus, population growth has been recognized as providing a critical link between the performance of individual organisms and the ecology and evolution of species. We present a theory that shows how the intrinsic rate of exponential population growth, rmax, and the carrying capacity, K, depend on individual(More)
Body size and temperature are the two most important variables affecting nearly all biological rates and times. The relationship of size and temperature to development is of particular interest, because during ontogeny size changes and temperature often varies. Here we derive a general model, based on first principles of allometry and biochemical kinetics,(More)
To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel(More)
Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago(More)
Plant vascular networks are central to botanical form, function, and diversity. Here, we develop a theory for plant network scaling that is based on optimal space filling by the vascular system along with trade-offs between hydraulic safety and efficiency. Including these evolutionary drivers leads to predictions for sap flow, the taper of the radii of(More)
Latitudinal gradients of biodiversity and macroevolutionary dynamics are prominent yet poorly understood. We derive a model that quantifies the role of kinetic energy in generating biodiversity. The model predicts that rates of genetic divergence and speciation are both governed by metabolic rate and therefore show the same exponential temperature(More)
Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths, arises because(More)
The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to(More)
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change.(More)