Valle Palomo

Learn More
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase originally identified as a regulator of glycogen metabolism but it also plays a pivotal role in numerous cellular functions, including differentiation, cell cycle regulation, and proliferation. The dentate gyrus of the hippocampus, together with the subventricular zone of the lateral(More)
BACKGROUND Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis(More)
BACKGROUND Identifying feasible therapeutic interventions is crucial for ameliorating the intellectual disability and other afflictions of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism. Hippocampal glycogen synthase kinase-3 (GSK3) is hyperactive in the mouse model of FXS (FX mice), and hyperactive GSK3(More)
Cognitive deficit is a core of schizophrenia and it is not effectively treated by the available antipsychotic drugs, hence new and more effective therapy is needed. Schizophrenia is considered as a pathway disorder where Disrupted-In-Schizophrenia-1 (DISC1) is important molecular player that regulates multiple cellular cascades. We recently reported(More)
During the development of the central nervous system (CNS), oligodendrocyte precursors (OPCs) are generated in specific sites within the neural tube and then migrate to colonize the entire CNS, where they differentiate into myelin-forming oligodendrocytes. Demyelinating diseases such as multiple sclerosis (MS) are characterized by the death of these cells.(More)
Luminescent semiconductor ∼9.5 nm nanoparticles (quantum dots: QDs) have intrinsic physiochemical and optical properties which enable us to begin to understand the mechanisms of nanoparticle mediated chemical/drug delivery. Here, we demonstrate the ability of CdSe/ZnS core/shell QDs surface functionalized with a zwitterionic compact ligand to deliver a(More)
Chronic neuroinflammation has been increasingly recognized as a primary mechanism underlying acute brain injury and neurodegenerative diseases. Enhanced expression of diverse pro-inflammatory agents in glial cells has been shown to contribute to the cell death that takes place in these disorders. Previous data from our group have shown that different(More)
A neural network model has been developed to predict the inhibitory capacity of any chemical structure to be a phosphodiesterase 7 (PDE7) inhibitor, a new promising kind of drugs for the treatment of neurological disorders. The numerical definition of the structures was achieved using CODES program. Through the validation of this neural network model, a(More)
Increased levels of glutamate causing excitotoxic damage accompany many neurological disorders. A well-characterized model of excitotoxic damage involves administration of kainic acid (KA), which causes limbic seizure activity and subsequent neuronal death, particularly in the CA1 and CA3 areas of the hippocampus. Inhibition of the enzyme glycogen synthase(More)
87 Lipina et al. Inhibition of glycogen synthase kinase 3 prevents ... Abstract. Glycogen synthase kinase 3 (GSK-3) is an important molecular player involved into diverse cellular functions including metabolism, transcription, cell survival and synaptic plasticity. Here, we focused on characterization of the cognitive effects of GSK-3 inhibitor, a newly(More)