Valery U. Zavorotny

Learn More
A theoretical model that describes the power of a scattered Global Positioning System (GPS) signal as a function of geometrical and environmental parameters has been developed. This model is based on a bistatic radar equation derived using the geometric optics limit of the Kirchhoff approximation. The waveform (i.e., the time-delayed power obtained in the(More)
Instrumentation and retrieval algorithms are described which use the forward scattered range-coded signals from the global positioning system (GPS) radio navigation system for the measurement of sea surface roughness. This roughness has long been known to be dependent upon the surface wind speed. Experiments were conducted from aircraft along the TOPEX(More)
Reflected Global Positioning System (GPS) signals can be used to infer information about soil moisture in the vicinity of the GPS antenna. Interference of direct and reflected signals causes the composite signal, observed using signal-to-noise ratio (SNR) data, to undulate with time while the GPS satellite ascends or descends at relatively low elevation(More)
Global Positioning System (GPS) signals reflected from applications. Recently, the sensitivity of this signal to the ocean surface have potential use for various remote propagation effects was found to be useful for various sensing purposes. Some possibilities are measurements of environmental remote sensing techniques. For example, surface roughness(More)
[1] Snow is an important component of the climate system and a critical storage component in the hydrologic cycle. However, in situ observations of snow distribution are sparse, and remotely sensed products are imprecise and only available at a coarse spatial scale. GPS geodesists have long recognized that snow can affect a GPS signal, but it has not been(More)
Measurements of soil moisture at various spatial and temporal scales are needed to study the water and carbon cycles. While satellite missions have been planned to measure soil moisture at global scales, these missions also need ground-based soil moisture data to validate their observations and retrieval algorithms. Here, we demonstrate that signals(More)
Global Positioning System (GPS) multipath signals can be used to infer volumetric soil moisture around a GPS antenna. While most GPS users concentrate on the signal that travels directly from the satellite to the antenna, the signal that is reflected by nearby surfaces contains information about the environment surrounding the antenna. The interference(More)
Global positioning system (GPS) signals reflected from the ocean surface can be used for various remote sensing purposes. Some possibilities include measurements of surface roughness characteristics from which the rms of wave slopes, wind speed, and direction could be determined. In this paper, reflected GPS measurements that were collected using aircraft(More)
The potential to use GPS signal-to-noise ratio (SNR) data to estimate changes in vegetation surrounding a ground-based antenna is evaluated. A 1-D plane-stratified model that simulates the response of GPS SNR data to changes in both soil moisture and vegetation is presented. The model is validated against observations of SNR data from four field sites with(More)
[1] Measurements of soil moisture, both its global distribution and temporal variations, are required to study the water and carbon cycles. A global network of in situ soil moisture stations is needed to supplement datasets from satellite sensors. We demonstrate that signals routinely recorded by Global Positioning System (GPS) receivers for precise(More)