Valerie S. Calvert

Learn More
Deciphering the cellular and molecular interactions that drive disease within the tissue microenvironment holds promise for discovering drug targets of the future. In order to recapitulate the in vivo interactions thorough molecular analysis, one must be able to analyze specific cell populations within the context of their heterogeneous tissue microecology.(More)
The interactions of transformed cells with the surrounding stromal cells are of importance for tumor progression and metastasis. The relevance of adipocyte-derived factors to breast cancer cell survival and growth is well established. However, it remains unknown which specific adipocyte-derived factors are most critical in this process. Collagen VI is(More)
PURPOSE Sorafenib is a kinase inhibitor targeting Raf and other kinases (ie, vascular endothelial growth factor receptor [VEGFR], platelet-derived growth factor receptor [PDGFR], Flt3, and c-KIT). This study assessed its activity and tolerability in patients with recurrent ovarian cancer (OC) or primary peritoneal carcinomatosis (PPC). METHODS This(More)
Defects in cell signaling pathways play a central role in cancer cell growth, survival, invasion and metastasis. An important goal of proteomics is to characterize and develop "circuit maps" of these signaling pathways in normal and diseased cells. We have used reverse-phase protein array technology coupled with laser capture microdissection and(More)
Aberrant activation of the NOTCH1 pathway by inactivating and activating mutations in NOTCH1 or FBXW7 is a frequent phenomenon in T-cell acute lymphoblastic leukemia (T-ALL). We retrospectively investigated the relevance of NOTCH1/FBXW7 mutations for pediatric T-ALL patients enrolled on Dutch Childhood Oncology Group (DCOG) ALL7/8 or ALL9 or the German(More)
Using a general strategy for evaluating clinical tissue specimens, we found that 70% ethanol fixation and paraffin embedding is a useful method for molecular profiling studies. Human prostate and kidney were used as test tissues. The protein content of the samples was analyzed by one-dimensional gel electrophoresis, immunoblot, two-dimensional gel(More)
Proteomics, the study of protein function within biologic systems, will further our understanding of cancer pathogenesis. Coupled with transcript profiling, proteomics can herald the advent of molecular therapy tailored to the individual patient's neoplasm. Protein microarrays, one emerging class of proteomic technologies, have broad applications for(More)
Laser capture microdissection was combined with reverse phase protein lysate arrays to quantitatively analyze the ratios of mitochondrial encoded cytochrome c oxidase subunits to nuclear encoded cytochrome c oxidase subunits, and to correlate the ratios with malignant progression in human prostate tissue specimens. Cytochrome c oxidase subunits I-III(More)
Reverse phase protein arrays represent a new proteomics microarray technology with which to study the fluctuating state of the proteome in minute quantities of cells. The activation status of cell signaling pathways controls cellular fate and deregulation of these pathways underpins carcinogenesis. Changes in pathway activation that occur between early(More)
PURPOSE Adipose tissue has been suggested to contribute to the pathogenesis of various disease states, including prostate cancer. We investigated the association of cytokines and growth factors secreted by periprostatic adipose tissue with pathological features of aggressive prostate cancer. MATERIALS AND METHODS Periprostatic adipose tissue was harvested(More)