Valerie Anne Gerard

Learn More
BACKGROUND The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12)(More)
BACKGROUND The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs(More)
Vascular endothelium is a potential target for therapeutic intervention in diverse pathological processes, including inflammation, atherosclerosis, and thrombosis. By virtue of their intravascular topography, endothelial cells are exposed to dynamically changing mechanical forces that are generated by blood flow. In the present study, we investigated the(More)
Gold nanomaterials are currently raising a significant interest for human welfare in the field of clinical diagnosis, therapeutics for chronic pathologies, as well as of many other biomedical applications. In particular, gold nanomaterials are becoming a promising technology for developing novel approaches and treatments against widespread societal diseases(More)
UNLABELLED In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated(More)
Nonradiative energy transfer to metal nanoparticles is a technique used for optical-based distance measurements which is often implemented in sensing. Both Förster resonant energy transfer (FRET) and nanometal surface energy transfer (NSET) mechanisms have been proposed for emission quenching in proximity to metal nanoparticles. Here quenching of emission(More)
Surface plasmon enhanced Förster resonant energy transfer (FRET) between CdTe nanocrystal quantum dots (QDs) has been observed in a multilayer acceptor QD-gold nanoparticle-donor QD sandwich structure. Compared to a donor-acceptor QD bilayer structure without gold nanoparticles, the FRET rate is enhanced by a factor of 80 and the Förster radius increases(More)
The distance dependence of localized surface plasmon (LSP) coupled Förster resonance energy transfer (FRET) is experimentally and theoretically investigated using a trilayer structure composed of separated monolayers of donor and acceptor quantum dots with an intermediate Au nanoparticle layer. The dependence of the energy transfer efficiency, rate, and(More)
BACKGROUND Gelatine coating was previously shown to effectively reduce the cytotoxicity of CdTe Quantum Dots (QDs) which was a first step towards utilising them for biomedical applications. To be useful they also need to be target-specific which can be achieved by conjugating them with Folic Acid (FA). RESULTS The modification of QDs with FA via an(More)