Valerie Anne Galton

Learn More
In developing Rana catesbeiana tadpoles, the timing of the thyroid hormone (TH)-dependent metamorphic responses varies markedly among tissues. Yet at any one time these tissues are exposed to the same plasma concentration of TH, suggesting that TH action is regulated in part at the level of the peripheral tissues. A major factor in TH action is the(More)
Adrenal steroids have been shown to accelerate both spontaneous and thyroid hormone (TH)-induced metamorphosis. The present study is concerned with the mechanisms underlying this effect. Premetamorphic Rana catesbeiana tadpoles were immersed in water containing 1-20 nM T4 or T3 +/- 1 microM corticosterone (B) for 6 to 19 days. B is the predominant(More)
The type 2 deiodinase (D2), a selenoenzyme that catalyzes the conversion of T4 to T3 via 5'-deiodination, is expressed in the pituitary, brain, brown adipose tissue (BAT), and the reproductive tract. To examine the physiological role of this enzyme, a mouse strain lacking D2 activity was developed using homologous recombination. The targeting vector(More)
The realization some forty years ago that several iodothyronine compounds are present in the circulation suggested that deiodination occurs in various tissues. Subsequently, deiodination was indeed documented in in vivo studies. Later, using in vitro assay techniques, three deiodinase processes, termed types 1, 2 and 3, were defined that differed in terms(More)
The iodothyronine deiodinases, D1, D2, and D3, all contain selenium (Se) in the form of selenocysteine at their active sites, and they play crucial roles in determining the circulating and intracellular levels of the active thyroid hormone (TH), T3. However, not only are serum T3 levels normal in Se-deficient rats but phenotypic and reproductive(More)
The later stages of cochlear differentiation and the developmental onset of hearing require thyroid hormone. Although thyroid hormone receptors (TRs) are a prerequisite for this process, it is likely that other factors modify TR activity during cochlear development. The mouse cochlea expresses type 2 deiodinase (D2), an enzyme that converts thyroxine, the(More)
As is typical of other hormone systems, the actions of the thyroid hormones (TH) differ from tissue to tissue depending upon a number of variables. In addition to varying expression levels of TH receptors and transporters, differing patterns of TH metabolism provide a critical mechanism whereby TH action can be individualized in cells depending on the needs(More)
The deiodination of thyroid hormones in extrathyroidal tissues plays an important role in modulating thyroid hormone action. The type II deiodinase (DII) converts thyroxine to the active hormone 3,5,3'-triiodothyronine, and in the rat is expressed in the brain, pituitary gland, and brown adipose tissue (BAT). Complementary DNAs (cDNAs) for the types I and(More)
The type III iodothyronine 5-deiodinase metabolizes thyroxine and 3,5,3'-triiodothyronine to inactive metabolites by catalyzing the removal of iodine from the inner ring. The enzyme is expressed in a tissue-specific pattern during particular stages of development in amphibia, birds, and mammals. Recently, a PCR-based subtractive hybridization technique has(More)
The Mexican axolotl, Ambystoma mexicanum, is a neotenous salamander that rarely undergoes anatomical metamorphosis, but can be induced to do so by administration of thyroxine (T4). The neoteny appears to be due primarily to low levels of plasma T4 secondary to a low rate of secretion of thyroid-stimulating hormone. However, other factors may also be(More)