Valeria Naim

Learn More
Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase(More)
Chromosomal instability (CIN) is a hallmark of tumour initiation and progression. Some genomic regions are particularly unstable under replication stress, notably common fragile sites (CFSs) whose rearrangements in tumour cells contribute to cancer development. Recent work has shown that the Fanconi anaemia (FANC) pathway plays a role in preventing(More)
In centrosome-containing cells, spindle assembly relies on microtubules (MTs) nucleated from both centrosomes and chromosomes. Recent work has suggested that additional spindle MTs can be nucleated by gamma-tubulin ring complexes (gamma-TuRCs) that associate laterally with preexisting spindle MTs, leading to spindle amplification. It has been proposed that(More)
The mechanisms underlying completion of cytokinesis are still poorly understood. Here, we show that the Drosophila orthologue of mammalian Citron kinases is essential for the final events of the cytokinetic process. Flies bearing mutations in the Drosophila citron kinase (dck) gene were defective in both neuroblast and spermatocyte cytokinesis. In both cell(More)
The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a(More)
RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally(More)
Human DNA polymerase η (Pol η) is best known for its role in responding to UV irradiation-induced genome damage. We have recently observed that Pol η is also required for the stability of common fragile sites (CFSs), whose rearrangements are considered a driving force of oncogenesis. Here, we explored the molecular mechanisms underlying this newly(More)
SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor gene involved in the tumorigenesis of a spectrum of solid cancers. Heterozygous SASH1 variants are known to cause autosomal-dominant dyschromatosis. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous Moroccan family with two affected siblings presenting an(More)
Fanconi anemia (FA) is an inherited chromosomal instability syndrome that is characterized by progressive bone marrow failure. One of the main causes of morbidity and mortality in FA is a bleeding tendency, resulting from low platelet counts. Platelets are the final products of megakaryocyte (MK) maturation. Here, we describe a previously unappreciated role(More)
Megakaryocyte is the naturally polyploid cell that gives rise to platelets. Polyploidization occurs by endomitosis, a process corresponding to a late failure of cytokinesis with a backward movement of the daughter cells. Generally, a pure defect in cytokinesis produces a multinucleated cell, but megakaryocytes are characterized by a single polylobulated(More)