#### Filter Results:

#### Publication Year

2000

2004

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

At very short timescales neuronal spike trains may be compared to binary streams where each neuron gives at most one spike per bin and therefore its state can be described by a binary variable. Time-averaged activity like the mean firing rate can be generally used on longer timescales to describe the dynamics; nevertheless, enlarging the space of the… (More)

In a recent work we have introduced a novel approach to study the effect of weak non-linearities in the transfer function on the information transmitted by an analogue channel, by means of a perturbative diagrammatic expansion. We extend here the analysis to all orders in perturbation theory, which allows us to release any constraint concerning the… (More)

In a recent study, the initial rise of the mutual information between the firing rates of N neurons and a set of p discrete stimuli has been analytically evaluated, under the assumption that neurons fire independently of one another to each stimulus and that each conditional distribution of firing rates is Gaussian. Yet real stimuli or behavioral correlates… (More)

We present four 'case study' examples of solvable problems in the theory of recurrent neural networks, which are relevant to our understanding of information processing in the brain, but which are also interesting from a purely statistical mechanical point of view, even at the level of simple models (which helps in stimulating interdisciplinary work). The… (More)

- E Korutcheva, V Del Prete, J.-P Nadal
- 2000

We evaluate the mutual information between the input and the output of a two layer network in the case of a noisy and non-linear analogue channel. In the case where the non-linearity is small with respect to the variability in the noise, we derive an exact expression for the contribution to the mutual information given by the non-linear term in first order… (More)

Recent studies have explored theoretically the ability of populations of neurons to carry information about a set of stimuli, both in the case of purely discrete or purely continuous stimuli, and in the case of multidimensional continuous angular and discrete correlates, in the presence of additional quenched disorder in the distribution. An analytical… (More)

- ‹
- 1
- ›