Valeria Azzarito

Learn More
Inhibition of protein-protein interactions (PPIs) represents a significant challenge because it is unclear how they can be effectively and selectively targeted using small molecules. Achieving this goal is critical given the defining role of these interactions in biological processes. A rational approach to inhibitor design based on the secondary structure(More)
α-Helix mediated protein-protein interactions are of major therapeutic importance. As such, the design of inhibitors of this class of interaction is of significant interest. We present methodology to modify N-alkylated aromatic oligoamide α-helix mimetics using 'click' chemistry. The effect is shown to modulate the binding properties of a series of(More)
α-Helix-mediated protein-protein interactions (PPIs) are important targets for small-molecule inhibition; however, generic approaches to inhibitor design are in their infancy and would benefit from QSAR analyses to rationalise the noncovalent basis of molecular recognition by designed ligands. Using a helix mimetic based on an oligoamide scaffold, we have(More)
A major effort in modern bio-organic chemistry focuses on the design, synthesis and structural characterisation of foldamers: non-natural oligomers that adopt well-defined secondary, tertiary and quaternary structures. One ultimate objective of such studies is to recapitulate the functional behaviour of biomacromolecules. Particular emphasis has been placed(More)
A new series of simple endoperoxides, characterized by a 3-methoxy-1,2-dioxane scaffold, was designed on the basis of a previously developed pharmacophore. Through a simplified and versatile scheme of synthesis, which utilizes cheap and commercially available starting materials, it was possible to obtain several structurally and stereochemically different(More)
Rapid access to rigid rods: A method is described for the synthesis of 3-O-alkylated aromatic oligobenzamide foldamers that could be used for assembly of libraries of α-helix mimetic inhibitors of protein-protein interactions (see scheme; Fmoc=9-fluorenylmethoxycarbonyl).
The development of foldamers capable of selective molecular recognition of solvent exposed protein surfaces represents an outstanding challenge in supramolecular chemical biology. Here we introduce an oligoamide foldamer with well-defined conformation that bears all the hallmarks of an information rich oligomer. Specifically, the foldamer recognizes its(More)
  • 1