Valentyn Antochshuk

Learn More
Monoclonal antibodies display highly variable solution properties such as solubility and viscosity at elevated concentrations (>50 mg/mL), which complicates antibody formulation and delivery. To understand this complex behavior, it is critical to measure the underlying protein self-interactions that govern the solution properties of antibody suspensions. We(More)
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of(More)
This research focused on evaluation and application of two methods in studying weak protein-protein interactions, i.e. diffusion interaction parameter (KD) and second virial coefficient (B22), both of which are first-order coefficients of protein interactions. Although the plate-based KD method successfully distinguished KD values with relatively large(More)
In this study, an automated high-throughput relative chemical stability (RCS) assay was developed in which various therapeutic proteins were assessed to determine stability based on the resistance to denaturation post introduction to a chaotrope titration. Detection mechanisms of both intrinsic fluorescence and near UV circular dichroism (near-UV CD) are(More)
  • 1