Valentino Fossi

Learn More
This paper presents a discrete-time sliding mode control based on neural networks designed for robotic manipulators. Radial basis function neural networks are used to learn about uncertainties affecting the system. The online learning algorithm combines the growing criterion and the pruning strategy of the minimal resource allocating network technique with(More)
This paper presents a robust discrete-time sliding mode control coupled with an uncertainty estimator designed for planar robotic manipulators. Experimental evidence shows satisfactory trajectory tracking performances and noticeable robustness in the presence of model inaccuracies, disturbances and payload perturbations. Ultimate boundedness of the tracking(More)
  • 1