Valentinas Snitka

Learn More
Bovine serum albumin (BSA) and zinc oxide nanoparticles (ZnO NPs) are chosen as a model system to investigate NPs-protein corona complex formation. ZnO NPs with average size of ∼ 20 nm are coated with BSA using covalent and non-covalent conjugation at temperatures of 4 °C and 20 °C. The interaction mechanism between ZnO NPs and BSA is studied by using(More)
We applied transcriptional profiling to elucidate the mechanisms associated with pulmonary responses to titanium dioxide (TiO2 ) nanoparticles (NPs) of different sizes and surface coatings, and to determine if these responses are modified by NP size, surface area, surface modification, and embedding in paint matrices. Adult C57BL/6 mice were exposed via(More)
The changes of the stainless-steel electrode surface morphology occurring due to dissolution of the anode under the action of electric pulses which are commonly utilized in cell electromanipulation procedures, have been studied by using atomic force microscopy. The surface of the polished electrode was rather smooth--the average roughness was 13-17 nm and(More)
Direct detection of biological transformations of single living cells in vivo has been performed by the advanced combination of local topographic imaging by Atomic Force Microscopy (AFM) and label-free sub-surface chemical characterization using new μ-Tip-Enhanced Raman Spectroscopy (μ-TERS). The enhancing mechanism for μ-TERS tips with micrometre range(More)
Employing the higher vibration modes of weak cantilevers enables operating frequencies up to megahertz to be reached, at the same time keeping the force on the sample reasonably low. This allows the interaction time between the tip and the surface to be reduced and should cause the response of surface to be dominated by surface stiffness. The simple(More)
The interaction of anatase titanium dioxide (TiO(2)) nanoparticles with chemical vapour deposited graphene sheets transferred on glass substrates is investigated by using atomic force microscopy, Raman spectroscopy and imaging. Significant electronic interactions between the nanoparticles of TiO(2) and graphene were found. The changes in the graphene Raman(More)
The green synthesis of irregular-shaped nanomaterials used for various applications in nanoplasmonics, medicine, and biotechnology creates an economical and environmental challenge. We describe the rapid wet-chemical approach to synthesis of stable and water-soluble gold nanostructues at room temperature. In addition to spherical and road-like(More)
The evaluation of the cyto- and bio-compatibility is a critical step in the development of graphene oxide (GO) as a new promising material for in vivo biomedical applications. In this study, we report the impact of GO, with and without the addition of bovine serum albumin, on healthy (Chinese hamster ovary) and a cancer (mouse hepatoma MH-22A) cells(More)
The polyrotaxane formation approach was evaluated for synthesis of continuous beds for capillary electrochromatography. This approach has the advantage of generating diverse electroosmotic and chromatographic properties without chemical reactions. The polyrotaxane derivatized continuous beds were formed adding the macrocyclic compounds to the solution of(More)
By monitoring the thermal noise of a vertically oriented micromechanical force sensor, we detect the viscoelastic response to shear for water in a subnanometer confinement. Measurements in pure water as well as under acidic and high-ionic-strength conditions relate this response to the effect of surface-adsorbed cations, which, because of their hydration,(More)