Valentina P. Kholodova

Learn More
The interest of researchers in selenium has sharply increased worldwide within the past two decades. Selenium is an important microelement, which is present at extremely low concentrations in bacteria, animals, and humans. Selenium is not only able to increase the general resistance of the organism to biopathogens, but also exerts a protective effect(More)
A facultative halophite Mesembryanthemum crystallinum L. (the common ice plant) was shown to grow successively at the high concentrations of Cu and Zn. Although 25 µM CuSO4 or 800 µM ZnSO4 retarded markedly plant growth, they did not interfere with the completion of plant development and the formation of viable seeds. In such plants, leaves accumulated more(More)
A wide range of cadmium concentrations (from 4 to 200 μM for seedlings and up to 2 mM for germinating kernels) was used to assess Cd toxic effects on maize (Zea mays L.) plants at the different developmental stages: germinating kernels, seedlings (4–9 days), and juvenile plants (34 days). Cd accumulation in plant organs was followed, and its lethal(More)
In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf(More)
The effects of increase copper concentrations in medium (10–150 μM CuSO4) on growth and viability of the roots of two-week-old soybean seedlings (Glycine max L., cv. Dorintsa) were studied. Copper excess suppressed biomass accumulation and linear plant growth; copper affected root growth much stronger than shoot growth. The presence of 10 μM CuSO4 in medium(More)
In experiments with rapeseed (Brassica napus L., cv. Westar) plants, it was confirmed that copper was considerably more toxic than zinc. The toxic effects of 50 and 150 μM CuSO4 were comparable to those of 1000 and 2500 μM ZnSO4. The analysis of the effects of these concentrations of copper and zinc on photosynthetic pigment contents and on the rate of(More)
Physiological mechanisms of two rape (Brassica napus L.) genotype adaptation to chlorine salinity were investigated. The plants of two cultivars (Olga and Westar) differing in salt tolerance were grown in the pots filled with Perlite on the Hoagland and Snyder’s medium under controlled conditions. At a stage of 3–4 true leaves, the plants experienced(More)
The review presents current literature data on the mechanisms maintaining plant water balance or those providing for tolerance to its disturbance. We consider the processes enabling the changes in the transpiration rate under water deficit due to changes in stomatal conductivity and the changes in the rate of leaf growth, as well as the role of hydraulic(More)
Western-blot analysis was used to determine the contents of aquaporin isoforms MIP A, MIP B, and MIP C in cell membranes isolated from roots and leaves of Mesembryanthemum crystallinum plants with C3 and Crassulacean acid metabolism (CAM) types of photosynthesis. These membrane preparations were also used to assess osmotic water permeability; to this end,(More)
236 At present, it is quite clear that nitric oxide (NO) is an important signaling molecule in both animals and plants [1]. In animals, NO is synthesized by nitric oxy genase (NOS), which oxidizes L arginine with O2 and NADPH. In plants, nitrate reductase (NR) is involved in the NO synthesis [1, 2]. There are two pathways of NO signaling: the cGMP dependent(More)