Val Pinciu

Learn More
In this paper we propose novel algorithms for reconfiguring modular robots that are composed of n atoms. Each atom has the shape of a unit cube and can expand/contract each face by half a unit, as well as attach to or detach from faces of neighboring atoms. For universal reconfiguration, atoms must be arranged in 2 × 2 × 2 modules. We respect certain(More)
In this paper we propose novel algorithms for reconfiguring modular robots that are composed of n atoms. Each atom has the shape of a unit cube and can expand/contract each face by half a unit, as well as attach to or detach from faces of neighboring atoms. For universal reconfiguration, atoms must be arranged in 2×2×2 modules. We respect certain physical(More)
We propose a variant of Cauchy's Lemma, proving that when a convex chain on one sphere is redrawn (with the same lengths and angles) on a larger sphere, the distance between its endpoints increases. The main focus of this work is a comparison of three alternate proofs, to show the links between Toponogov's Comparison Theorem, Legendre's Theorem and Cauchy's(More)
Given a convex polyhedron with n vertices and F faces, what is the fewest number of pieces, each of which unfolds to a simple polygon, into which it may be cut by slices along edges? Shephard's conjecture says that this number is always 1, but it's still open. The fewest nets problem asks to provide upper bounds for the number of pieces in terms of n and/or(More)