Learn More
On each side of the midline of the Drosophila CNS, axons are organized into a series of parallel pathways. Here we show that the midline repellent Slit, previously identified as a short-range signal that regulates midline crossing, also functions at long range to pattern these longitudinal pathways. In this long-range function, Slit signals through the(More)
In the Drosophila CNS, the midline repellent Slit acts at short range through its receptor Robo to control midline crossing. Longitudinal axons express high levels of Robo and avoid the midline; commissural axons that cross the midline express only low levels of Robo. Robo levels are in turn regulated by Comm. Here, we show that the Slit receptors Robo2 and(More)
Wnt proteins play roles in many biological processes, including axon guidance and cell migration. In the mammalian hindbrain, facial branchiomotor (FBM) neurons undergo a striking rostral to caudal migration, yet little is known of the underlying molecular mechanisms. In this study, we investigated a possible role of Wnts and the planar cell polarity (PCP)(More)
Mutations in the gene CLN3 are responsible for the neurodegenerative disorder juvenile neuronal ceroid lipofuscinosis or Batten disease. CLN3 encodes a multi-spanning and hydrophobic transmembrane protein whose function is unclear. As a consequence, the cell biology that underlies the pathology of the disease is not well understood. We have developed a(More)
Glial cell differentiation in Drosophila melanogaster requires the activity of glide/gcm (glial cell deficient/glial cell missing). The role of this gene is to direct the cell fate switch between neurons and glial cells by activating the glial developmental program in multipotent precursor cells of the nervous system. In this paper, we show that glide/gcm(More)
Mutations in the CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early onset neurodegenerative disorder. JNCL is the most common of the NCLs, a group of disorders with infant or childhood onset that are caused by single gene mutations. The NCLs, although relatively rare, share many pathological and clinical similarities(More)
Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat(More)
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit(More)
Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat(More)
  • 1