Learn More
A record of atmospheric carbon dioxide (CO2) concentrations measured on the EPICA (European Project for Ice Coring in Antarctica) Dome Concordia ice core extends the Vostok CO2 record back to 650,000 years before the present (yr B.P.). Before 430,000 yr B.P., partial pressure of atmospheric CO2 lies within the range of 260 and 180 parts per million by(More)
1 T he fifth phase of the Coupled Model Intercomparison Project (CMIP5) is at present running simulations using state-of-the-art models to provide information about the likely evolution of climate over the twenty-first century, with additional experiments to analyse the uncertainties inherent in these projections 1. Models that perform equally well for(More)
A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, approximately 800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature(More)
Paleoclimate d ata show that climate sensitivity is ~3°C for doubled CO 2 , including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, i s ~6°C for doubled CO 2 fo r th e ran ge o f cl i-mate states between glacial conditions and ice-free Antarctica. Decreasing CO 2 was the main cause of a cooling trend that(More)
Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison,(More)
Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000(More)
The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions(More)
A detailed deuterium excess profile measured along the Dome C EPICA (European Project for Ice Coring in Antarctica) core reveals the timing and strength of the sea surface temperature changes at the source regions for Dome C precipitation. We infer that an Oceanic Cold Reversal took place in the southern Indian Ocean, 800 years after the Antarctic Cold(More)
The Northern Hemisphere hydrological cycle is a key factor coupling ice sheets, ocean circulation, and polar amplification of climate change. Here we present a Northern Hemisphere deuterium excess profile covering one climatic cycle, constructed with the use of delta18O and deltaD Greenland Ice Core Project (GRIP) records. Past changes in Greenland source(More)
We present an update of the 'key points' from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the(More)