Learn More
Vitamin A and its derivatives, the retinoids, have been implicated recently in the synaptic plasticity of the hippocampus and might therefore play a role in associated cognitive functions. Acting via transcription factors, retinoids can regulate gene expression via their nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors]. In a(More)
Recent data have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to a deposition of beta-amyloid (Abeta). The aim of this study was to precise the role of vitamin A and its nuclear receptors (RAR) in the processes leading to the Abeta deposits. Thus, the effect of vitamin A depletion and subsequent administration(More)
Our previous data showed that vitamin A deficiency (VAD) induces, in whole brain, a reduced amount of mRNA for brain retinoic acid (RA) and triiodothyronine (T3) nuclear receptors (i.e., RAR, RXR, and TR, respectively), which is accompanied by reduced amounts of mRNA and protein of neurogranin (RC3, a neuronal protein involved in synaptic plasticity) as(More)
Adult-onset hypothyroidism is associated with neurological changes such as cognitive dysfunction and impaired learning, which may be related to alterations of synaptic plasticity. We investigate the consequence of adult-onset hypothyroidism on thyroid-mediated transcription events in striatal synaptic plasticity, and the effect of triiodothyronine (T3)(More)
Vitamin A and its derivatives, the retinoids, have recently been reported to be implicated in the synaptic plasticity of the hippocampus and in cognitive functions. Acting via transcription factors, retinoids can regulate gene expression via their nuclear receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)]. We recently showed that a(More)
PURPOSE Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway is constitutively activated in melanoma. AZD6244 blocks MEK1/2, inhibiting ERK phosphorylation. We focus on associated cutaneous toxicity and we attempt to understand the underlying pathophysiology and design treatment strategies. (More)
Ageing is accompanied by certain problems resulting from changes of hormonal status, in particular thyroid hormone (T3) status and vitamin A status. Since retinoic acid (RA), the active metabolite of vitamin A, and T3 play physiological roles in the adult brain, the effect of ageing on the amounts of mRNA for retinoic acid (RAR and RXR) and triiodothyronine(More)
Thyroid hormone (TH) deficiency leads to molecular changes resulting in behavioural deficits. TH action is mediated by two types of nuclear receptors (TRs), TRalpha and TRbeta, which control target gene transcription. The relative contributions of the two TR products in mediating adult TH responses are poorly understood. As TRalpha1 transcripts are widely(More)
Recent studies have revealed that retinoids play an important role in the adult central nervous system and cognitive functions. Previous investigations in mice have shown that vitamin A deficiency (VAD) generates a hypo-expression of retinoic acid (RA, the active metabolite of vitamin A) receptors and of neurogranin (RC3, a neuronal protein involved in(More)
Given the important role of retinoids and thyroid hormone for optimal brain functioning and the tenuous relationship between retinoic acid (RA) and triiodothyronine (T3) signalings, we compared the effects of RA or T3 administrations on RA and T3 nuclear receptors (RAR, RXR and TR) and on their target genes, neuromodulin (GAP43) and neurogranin (RC3) in(More)