Valérie Buée-Scherrer

Learn More
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also(More)
Alzheimer's disease is characterized by an intraneuronal aggregation of hyperphosphorylated tau proteins into paired helical filaments. The hyperphosphorylation of tau proteins induces a decrease in their electrophoretic mobility, resulting in a pathological tau triplet referred to as tau 55, 64 and 69 or tau-PHF. We have developed monoclonal antibodies(More)
The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife development of obesity, a major risk factor of insulin resistance and type 2 diabetes, increases the risk of dementia and AD later in life. The impact of obesity on AD risk has been suggested to be related to central insulin resistance, secondary to peripheral insulin(More)
Tau pathology is characterized by intracellular aggregates of abnormally and hyperphosphorylated tau proteins. It is encountered in many neurodegenerative disorders, but also in aging. These neurodegenerative disorders are referred to as tauopathies. Comparative biochemistry of the tau aggregates shows that they differ in both tau isoform phosphorylation(More)
It is becoming increasingly apparent that non-neuronal cells play a critical role in generating and regulating the flow of information within the brain. Among these non-neuronal cells, astroglial cells have been shown to play important roles in the control of both synaptic transmission and neurosecretion. In addition to modulating neuronal activity,(More)
Senile plaque and paired helical filament (PHF) formation are characteristic of Alzheimer's disease, but the mechanisms leading to these lesions still remain unclear. To understand them better, we have performed different immunolabellings of amyloid protein and PHF. We describe a very specific immunodetection of PHF with AD2, a monoclonal antibody directed(More)
The distribution of immunoreactivity for the neurofilament triplet class of intermediate filament proteins was examined in the hippocampus of young, adult and elderly control cases and compared to that of Alzheimer's disease cases. In a similar fashion to non-human mammalian species, pyramidal neurons in the CA1 region showed a very low degree of(More)
Neurofibrillary tangles are observed in several neurodegenerative disorders including Alzheimer's disease, progressive supranuclear palsy, and amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. The major components of neurofibrillary tangles are hyperphosphorylated tau proteins that can be directly detected in brain homogenates, using(More)
Monoclonal antibodies against human paired helical filament tau (PHF-tau) proteins were produced. Two of these antibodies, AD1 and AD2, were shown by immunoblot to be directed against distinct hyperphosphorylated epitopes of the PHF-tau proteins. Using AD1 and AD2, an antigen-capture ELISA specific for PHF-tau proteins was developed and used to map the(More)
To examine the neuropathological characteristics of senile dementia of the Alzheimer type (SDAT) in very old people, we performed a quantitative analysis of the distribution of neurofibrillary tangles and senile plaques in the brains of 12 demented patients aged from 96 of 104 years. The hippocampal formation and the inferior temporal cortex displayed(More)