Valérie A Gérard

Learn More
BACKGROUND The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs(More)
BACKGROUND The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12)(More)
BACKGROUND Gelatine coating was previously shown to effectively reduce the cytotoxicity of CdTe Quantum Dots (QDs) which was a first step towards utilising them for biomedical applications. To be useful they also need to be target-specific which can be achieved by conjugating them with Folic Acid (FA). RESULTS The modification of QDs with FA via an(More)
Torpedo electric organ synaptosomes possess a typical vacuolar H+-ATPase (V-ATPase), inhibited by concanamycin A and insensitive to vanadate, made of the association of a catalytic soluble sector V1 to a membrane domain V0. In the electric nerves, the 57-kDa subunit B of the V1 sector was transported to the nerve endings by the slow axonal flow and did not(More)
  • Babu R Prasad, Gillian Mullins, Natalia Nikolskaya, David Connolly, Terry Smith, Yuri Rochev +9 others
  • 2016
(2012) 'Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells'. Abstract Background: The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic(More)
The aim of this work was to examine the effects of changes in external K+ concentration (Ko) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H(+)-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid(More)
  • 1